According to Horwich's minimal theory of truth, the explanatorily basic facts about the property of truth are expressed by the infinitely many, non-paradoxical, instances of the equivalence schema:

\[(T) \text{ The proposition that } p \text{ is true iff } p.\]

Moreover, Horwich claims that all non-basic facts about truth can be explained based on these T-biconditionals (conjoined with unproblematic assumptions of logic). But, then, how can generalizations about truth be explained on this basis? Horwich’s answer is to invoke an additional, non-standard rule of inference—the rule of infinite induction.

According to Horwich’s minimal theory of the meaning of "true", the predicate’s meaning is constituted by its explanatorily basic use or acceptance property, i.e. by our underived disposition to accept all T-biconditionals. Moreover, Horwich claims that all non-basic uses of the truth predicate can be explained based on this disposition (conjoined with dispositions to accept unproblematic assumptions of logic). But, then, how can our disposition to accept generalizations about truth be explained on this basis? Horwich’s answer is to invoke an additional explanatory premise—one that does not explicitly concern the truth predicate.

In my talk I discuss the proposed additions to resolve the generalization problem. Has Horwich resolved it?