

Track Maintenance for High Speed Rail – Perspective

- Currently, by international standards, there is no HSR in North America
- There is a large body of experience in higher speed rail
 - Amtrak NEC, speeds up to 150 MPH
 - Porter, IN to Detroit, MI, speeds up to 110 MPH
 - Poughkeepsie, NY to Hoffmans, NY, speeds up to 110 MPH
 - Joliet, IL to East St. Louis, IL, speeds up to 110 MPH
- Even though North America is not quite there yet, the lessons from around the world are clear
 - Technology is transferable
 - Will require North American railway engineers to think differently
- Focus here is on true high speed (300 KPH or higher)

What is a Good Approach to High Speed Track Maintenance?

- Starts with good construction standards focused on
 - High quality track structure, **UNIFORMLY** supported
 - Track quality is also married to systems
- Performance based safety and maintenance standards
 - Safety is job one, ride comfort is job two
 - Track and vehicle perform dynamically as a system
- Inspection and maintenance based on data
 - Requires automated inspection backed by data analysis
 - Maintenance plans based on proactive repair
 - Dedicated maintenance windows
- Good work methods

- What about FRA 213 Subpart G?
 - FRA standards are prescriptive, based on high probability of derailment
 - Can't afford to operate HSR at rejection limits
 - Speed restrictions kill schedules and service reliability
 - Does not give repair crews time to properly plan and execute work
 - Ride quality probably impacted before rejection limits reached
 - Multiple small defects (within limits) can cause problems
 - Combination defects
 - Small defects that lead to harmonic behavior of vehicles, discomfort
- Vehicles may not tolerate some deviations in lower track classes governed by 213 Subparts A thru F

- Where do we start?
 - With a known vehicle
 - Suspension type, characteristics must be a known, also car body parameters
 - Existing vehicle should have a dynamics "model" already developed
 - If the vehicle is entirely new, a dynamics model must be developed
 - Can estimate parameters initially
 - Must verify with prototype when built and tested
- Once rolling stock models are available, they can be tested
 - On existing track based on data from geometry cars and other sources
 - Deviations can be identified that excite the vehicle
 - FRA has limits on wheel/rail interactive forces (L/V, NAL, etc.)
 - Those passing FRA but violating ride comfort criteria

- At the end of the day, good riding comfort will be obtained when:
 - Geometry deviations are identified that excite the vehicle
 - Single deviations
 - Multiple deviations of the same type
 - Combination deviations
 - Wheel/Rail interaction is controlled
 - Poor contact geometry can trigger hunting or high interactive forces
 - Efficient conformality between wheel and rail can be:
 - Modeled
 - Tested with prototype
- When the vehicle/track forces are under control, the track maintenance work load will be minimized

- The standards particular to an HSR system should include limits based on:
 - Action required by regulator (FRA)
 - Action required by internal standards, especially where ride quality is conpromised
 - Getting out and doing planned renewals/repairs economically before the first two bullets kick in

Inspection and Maintenance Based on Data

- Be prepared for big data
 - Multiple inspection systems tied together generate huge amounts of data
 - Trending based on advanced statistical tools requires large amounts....
 - Bayesian methods
 - Neural networks
 - Be able to handle small probability occurrences
- With autonomous sensors, can inspect real time in revenue service
- Inspection trains perform many types of inspection at revenue speed
- Those functions inspecting at speeds slower than revenue must fit into scheduled maintenance windows

Inspection and Maintenance Based on Data

- Inspection frequency should be based on what the data shows:
 - Degradation rates, statistically derived
 - Based on probability envelopes, not simple mean trend lines
 - Typically data exhibits saw-toothed tendencies
 - Minimum intervals that guard against small probability events
- Communications systems go hand in hand with real time inspection
- Inspection can be accomplished by identifying exceptions to normal
 - VTI accelerometer reading that does not match normal results
 - Helps cover unanticipated failure modes

Inspection and Maintenance Based on Data

- Technology supporting inspection is good and will only get better
- Work still needed to make systems cross talk (software protocol)
- Examples:
 - Drones with cameras for external roadbed integrity
 - GPS antennae for location
 - LIDAR for location and shape (i.e. ballast section)
 - GRMS for lateral track strength
 - Line scan cameras for tie and fastener integrity
 - Accelerometers for measuring Vehicle Track Interaction (VTI)
 - GPR for internal roadbed integrity, ballast condition
 - Non-stop testing for internal rail flaws
 - Rail surface analyzers

Maintenance Plans Based on Proactive Repairs

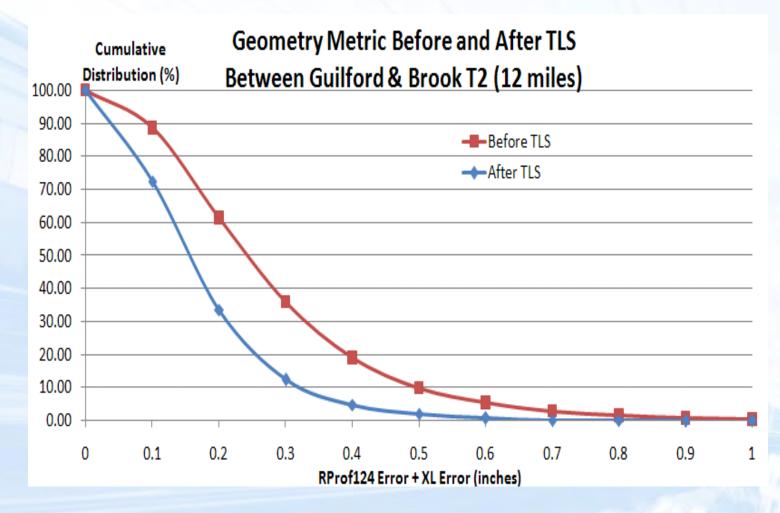
- Fix it before it breaks
 - Less disruption, less service impact
 - Less costly to do planned repairs then running around fixing broken things
 - Trend degradation from big data streams, combine with probability models
- When something does fail in-service, chase the root cause to ground
 - Check against degradation trend models
 - Outlier?
 - Model need updating?
 - Was there a clue of impending failure from a secondary inspection source?
- Requires analyses of many possible failure modes

Maintenance Plans Based on Proactive Repairs

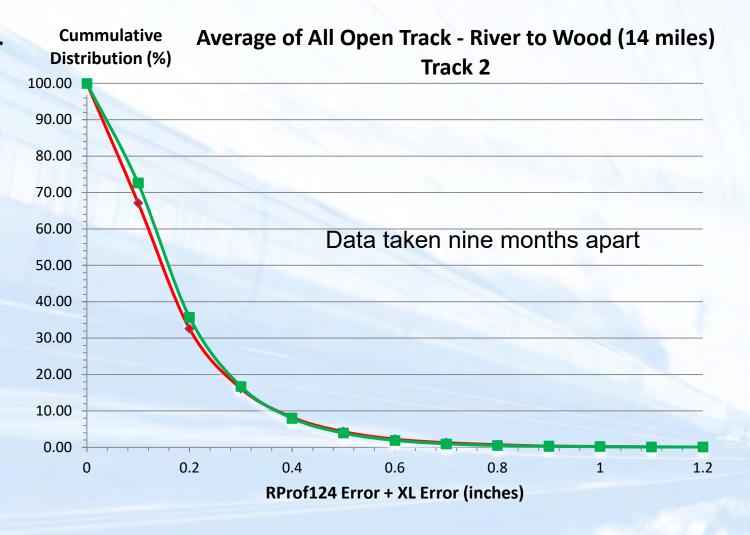
- Renewal versus repair
 - In a complex asset (i.e. turnout) consider workload likely in the future and how many outages/mobilizations would be required to repair components one at a time rather than replace the whole turnout
 - Outages may impact customers
 - Mobilizations impact labor costs
 - Renewals are preferred when repairs might jeopardize ride quality
 - Sometimes repair quality in the field is difficult to obtain
 - If possible, repair materials should be specifically designed to fit in a worn situation

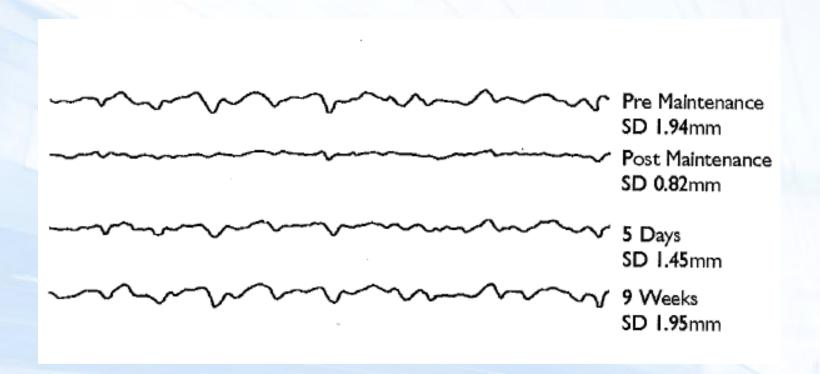
Maintenance Plans Based on Proactive Repairs

- Focus Areas
 - Safety/Reliability
 - Ride Comfort
 - Forecasting asset replacement
- Examples
 - Integrity of track structure
 - Geometry
 - Rail surface and profile
 - Track support
 - Subgrade
 - Ballast condition

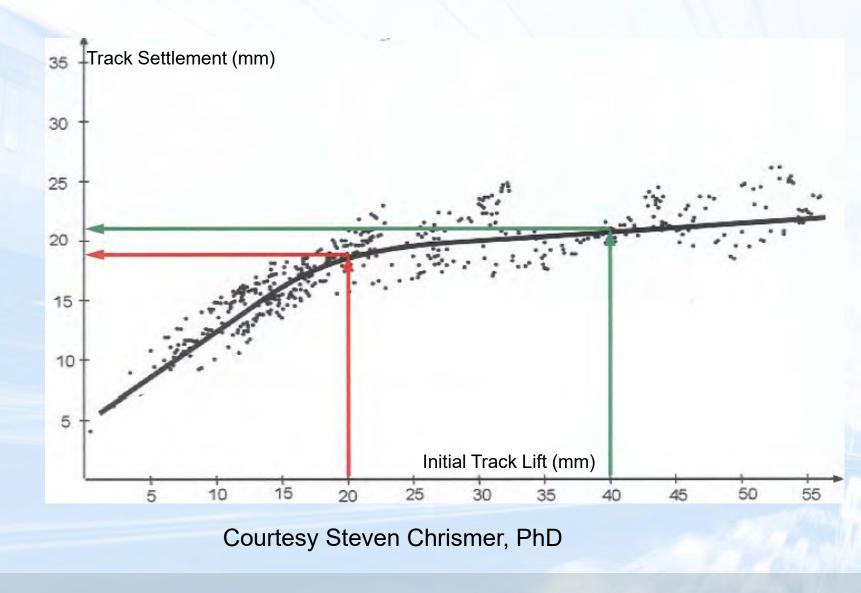


- All track, particularly when ballasted, must be referenced
 - Referenced means a system that enables staff to know where each foot (meter) is in space (x,y,z) with a high level of accuracy
 - For design
 - Where it is currently
 - Tampers capable of working with references can put track back on design
 - With only internal chords as reference, the tamper will only be able to smooth with the following long-term impacts:
 - Curves points will drift, possibly with mismatched superelevation
 - Curves will drift from uniform to variable radii
 - Tangents will develop multiple bearings
- Referencing track is becoming less expensive as technology improves


- Measure track quality before work
- Measure track quality after work as well
- Notice in the example that there are still significant errors at the 10nth percentile level after work
- Why?
- Study and fix process!


- "After" measurement for surfacing shows almost no improvement
- How can that be?
- Problems with US equipment, methods?

- Turns out to be a problem worldwide as this data from Europe shows
- Track returns to its former shape quickly after surfacing
- Why?



Courtesy Steven Chrismer, PhD

- Track raises less than 20mm are not durable
- Track has to be "over lifted" to achieve desired results
- Making surface corrections without over lifting results in short return tamping cycles
- Short tamping cycles destroys ballast...
- Ballast renewal is disruptive and expensive

Summary – Keys to Good High Speed Track

- Good construction standards
- Performance based safety and maintenance standards
- Data driven inspection and maintenance
- Good work methods

THANKS FOR YOUR ATTENTION!

