Cells, Genomes, and Life

Stem Cells, Tissue Regeneration & Repair, Prosthetics (Biology) Research
Studies on Degenerative Diseases: Blindness and Alzheimer’s Disease

Dr. Nora B. Caberoy
Associate Professor
School of Life Sciences
Phone: 702-774-1501
Email: nora.caberoy@unlv.edu

Expertise:
- Phagocytosis
- Retinal cell biology
- Retinal degenerative diseases (*Retinitis pigmentosa*, Age-related macular degeneration)
- Functional proteomics by phage display
- Alzheimer’s disease therapy
Delineating molecular mechanisms of blindness, hearing loss, and obesity

Mutation in Tubby gene resembles human syndromes:
- Hearing and/or vision - Usher’s, Retinitis pigmentosa
- Obesity and sensory deficits - Bardet Beidl, Alstrom’s
- Pathological mechanisms unknown

- Characterizing Tubby as a transcription factor
- Globally identifying genes regulated by Tubby
- Unraveling Tubby protein-protein interaction network
Redirecting phagocytosis of amyloid beta from inflammatory to non-inflammatory pathway

Alzheimer’s Disease (AD): Pathological hallmarks

1. Senile plaques
2. Neurofibrillary tangles
3. Massive brain inflammation

Strategy:
- engineer hybrid proteins
- binds oligomeric and fibrillar amyloid beta
- sequesters and directs phagocytic clearance of amyloid beta through non-inflammatory pathway
Comparative Biomechanics: Evolutionary, Environmental, & Applied

David V. Lee
Associate Professor
School of Life Sciences
Phone: 702-895-0807
Email: david.lee@unlv.edu
Web: Laboratory of Comparative Biomechanics

Expertise:
• Locomotion and Gait
• Animal Biomechanics
• X-ray Motion Analysis
• Joint Dysfunction
Locomotion

The Laboratory of Comparative Biomechanics explores fundamental questions in different modes of animal locomotion, including walking, running, hopping, climbing and digging.

X-ray video of a kangaroo rat on a miniature force platform showing different gaits

X-ray video of a parrot climbing a force-torque ladder in vertical and horizontal views
Human gait and prosthetics

We take a broadly comparative approach to understanding human walking dynamics and the function of both passive and active foot-ankle prostheses in restoring dynamics and speed.

Ground reaction forces are measured to determine dynamics in every instance of the stride.

Comparing human, avian, and robotic bipedalism based on whole-body dynamics.
Joint dysfunction and osteoarthritis

Joint dysfunction is a pathway to osteoarthritis and our laboratory investigates mechanical aspects of joint dysfunction preceding spontaneous hip and knee osteoarthritis. We are beginning to use the canine hip dysplasia model to understand biomechanical and genetic determinants of joint health.

X-ray video of spontaneous osteoarthritis in the guinea pig

Gait laboratory for force and x-ray motion analysis of canine gait

Zhou et al., 2010
Biochemistry – Interrogate Cell Signaling Pathways by Molecular, Genetic and Proteomic Approaches

Dr. Hong Sun
Associate Professor
Department of Chemistry and Biochemistry
Telephone: (702) 774-1485
Email: hong.sun@unlv.edu

Expertise
• Cell signaling
• Cancer cell biology
• Stem cell biology
• Mouse conditional knockout models
Regulation of cell surface receptor RTKs localization and activation

Problem: cancer cells often have multiple receptors (RTKs) activated on cell surface, making targeting inefficient.

Co-activation of AXL-MET RTKs:
HGF (ligand for MET) also activates AXL, detected by antibodies for p-AXL-Y779.

A novel mechanism discovered for RTK-Co-activation and signaling for cancer cell migration and invasion

ASM inhibition prevents the MET RTK to be transported to the cell surface, as revealed by immunostaining (MET, green label; and a control cell surface protein, red label).

Mass-Spectrometry analyses revealed that the ASM-regulated local lipid microdomains were enriched with many signaling molecules.

Regulation of stem cell maintenance: insights from the genetic studies in novel mouse knockout models

A. Gene locus

B. Loss of Purkinje neurons in cerebellum

D. ASM mutant MSCs failed to become bone-forming cells

E. Potentials of MSCs for tissue repair

C. Mesenchymal stem cells (MSCs) cultured from bones
Regeneration and Stem Cell Biology

Ai-Sun (Kelly) Tseng, Ph.D.
Associate Professor, School of Life Sciences
Adjunct Associate Professor, School of Medicine
Phone: 702-895-2095
Email: kelly.tseng@unlv.edu
Website: http://tseng.faculty.unlv.edu

Expertise
- Eye regeneration
- Limb regeneration
- Stem cell biology
- Bioelectrical signaling
- Cell proliferation and growth
Understanding Vertebrate Organ Regeneration
Kelly Tseng

Why Can Some Animals Regenerate Body Parts but Others Cannot?

Goal: understand natural regeneration using a model system with high regenerative ability (clawed frog)

Eye Regeneration

- Extra Eye
- Regenerate Eye

Spinal Cord Regeneration

- Tadpole
- Tail cut
- 7 days

Projects:

1) Identify and define mechanisms that drive tissue regeneration
2) Develop successful strategies to regenerate lost tissues and organs
Recent Publications:

http://tseng.faculty.unlv.edu
Stem Cells, Genetic and Epigenetic Inheritance, Cancer

Dr. Hui Zhang
Associate Professor
Department of Chemistry and Biochemistry
Phone: (702)774-1489
Email: hui.zhang@unlv.edu

Expertise:
- Biochemistry and developmental regulation of pluripotent embryonic stem cells, adult stem cells, and related diseases
- Regulation of chromatin structure, epigenetics, and transcription by protein methylation and ubiquitin enzymes
- DNA replication, DNA repair, cell cycle, genome instability, and cancer
- Targeting the vulnerability of human cancers
How SOX2 is regulated in embryonic stem cells and many other stem cells in development?

- Sox2 is a master stem cell protein that controls the self-renewal and pluripotency of embryonic stem cells that can develop into any tissue types of cells in development.

- SOX2 is also a master regulator of many adult stem cells including the stem/progenitor cells for brain, lung, colon, breast, liver, cochlea/ear, skin, retina, ovary, bladder, esophagus, and testes for tissue repair/regeneration.

- Artificial Sox2 expression (together with Oct4 and accessory Klf4, and Myc) can virtually convert any differentiated cells, such as skin or blood cells, into induced pluripotent stem cells (iPSCs), the embryonic stem cell-like cells.
• Discover novel proteins important for epigenetic and cell cycle regulation, examples:
 • Regulation of DNA replication and DNA methylation in normal and cancer cells

• How DNA replicates only once in one cell cycle in animal cells? How re-replication is prevented that causes genome instability and cancer?

• How the fidelity of epigenetic DNA methylation is maintained during DNA replication?

• Cancer Biology and therapy development
 Elevated SOX2 levels cause many cancers including cancers of lung, brain, breast, and ovary. These cancers are hard to treat because they behave like stem cells due to SOX2 expression. We are developing novel LSD1 chemical inhibitors that target the epigenetic vulnerability of these cancer cells.

The presence of SOX2 in different types of cancer cells is responsible for sensitivity towards our LSD1 inhibitors. *: Sensitive to LSD1 Inhibitors