Research Update on a Next Generation Rail Wear Model

Joseph W. Palese PE, MSCE
Senior Scientist
Railroad Engineering and Safety Program
University of Delaware

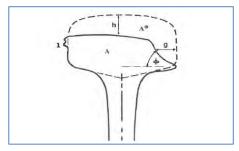
UNLV Symposium

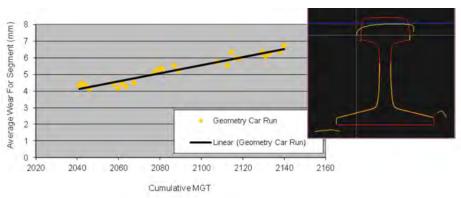
Railroad Infrastructure Diagnosis and Prognosis

October 16-17, 2018

University of Delaware

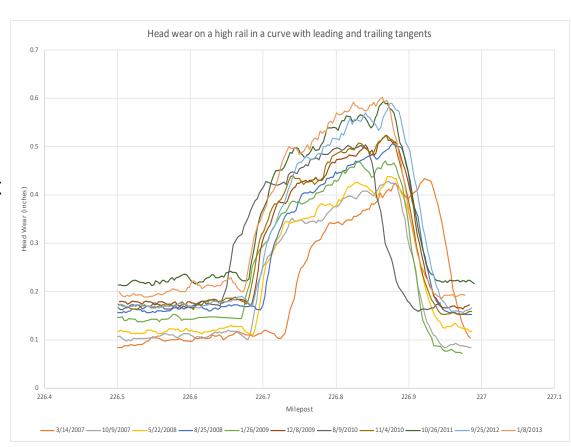
Newark, DE


Overview


- Rail is a key component of the track structure
- Rail replacement and maintenance of the order of
 - \$2-4 Billion in US alone
 - \$8 to 10 Billion worldwide
- Essential for safe operations
- Major failure modes
 - Wear
 - Internal fatigue
 - Surface fatigue
- Long lead time item because of high cost of purchase and installation
 - Necessary for good planning of rail installation
 - Need for good forecasting model for planning of maintenance

Rail Wear Data

- Currently inspected using machine vision technology
 - Multiple times per year
 - Every 5'-15'
 - Cartesian coordinates of rail profile
- Generates terabytes of data Software to align measured profile to original profile
- Calculate wear parameters
 - A: Area of rail head remaining
 - A*: Area of rail head lost
 - h: Vertical wear (sometimes called head or top) taken at the center of the rail
 - g: Lateral wear (sometimes called gage or side), normally 5/8" below top of rail
 - I: Lip from plastic flow
 - Φ: Gage face angle
- Traditional modeling
 - Simple linear regression
 - Single parameter



Curve Snapshot

- High rail head wear
- 11 measurements in 6 years
- Longitudinal misalignment
- Easily see increase in wear
 - Over time/MGT
 - Uniform in leading tangent
 - Non uniform in curve
- Note misalignment of data

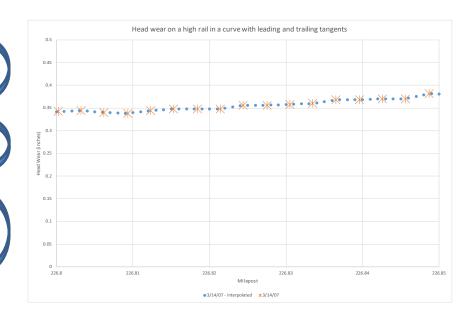
Variations in Data Sampling Intervals

- Common milepost range
- Each wear data point tagged with MP location
- 123 to 174 samples per inspection
- Min shows design sampling interval
 - 15.84' and 14.78'
 - Likely two separate inspection cars
- Max shows missed samples
 - Due to bad profile data
- Average varies from 15.1 to18.9'

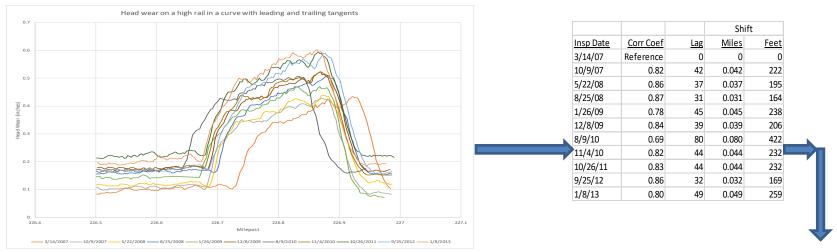
<u>Date</u>	<u>Min</u>	Max	Avg	<u>Count</u>
3/14/07	15.84	32.21	16.93	155
10/9/07	15.84	32.21	16.30	161
5/22/08	15.84	96.10	18.89	139
8/25/08	14.78	44.88	15.72	167
1/26/09	15.84	144.14	21.24	123
12/8/09	14.78	45.94	15.36	169
8/9/10	15.84	48.05	18.47	130
11/4/10	15.84	63.89	16.31	161
10/26/11	3.17	30.10	15.10	174
9/25/12	15.84	49.10	17.16	153
1/8/13	14.78	29.57	15.10	170

New Longitudinal Alignment Process

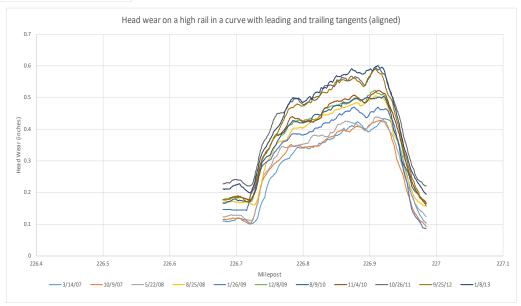
- Utilize time series stochastic process
 - Requires uniform interval

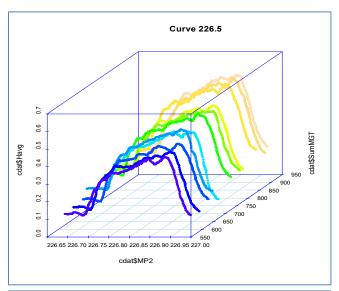

Estimate a function for each inspection series using linear interpolation or spline

Up-sample each inspection series to common interval and milepost

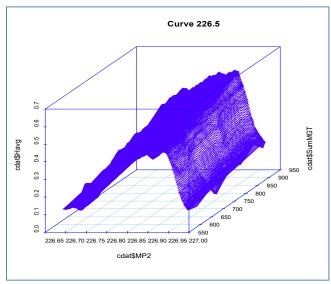

Determine lag to reference series using cross-correlation

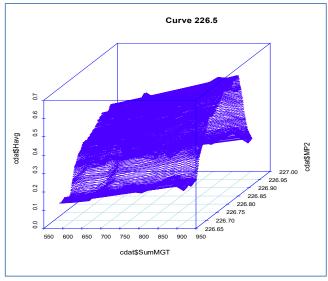
$$p(l) = \frac{\sum_{i=1}^{n} [(x \ (i \) - x^{-}) * (y \ (i \ -l \) - y_{bar})]}{\operatorname{Root}(\sum_{i=1}^{n} (x \ (i \) - x^{n-})^{2}) \operatorname{Root}(\sum_{i=1}^{n} (y \ (i \ -l \) - y_{bar})^{2})}$$


Shift each inspection series to reference according to lag

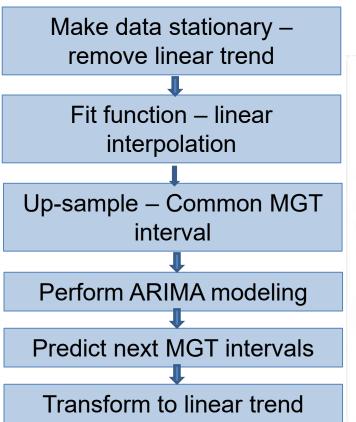

Aligned Data




Results in 400 samples for each inspection at same milepost locations with consistent distance interval



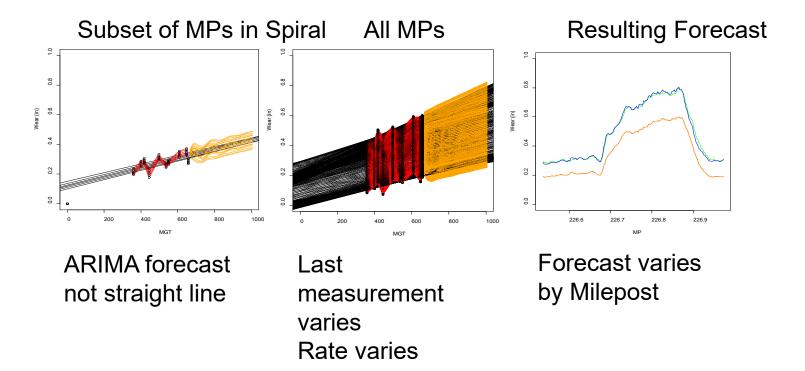
3-D Plot: Head Wear, MP, Sum MGT





ARIMA – Auto Regressive Integrated Moving Average

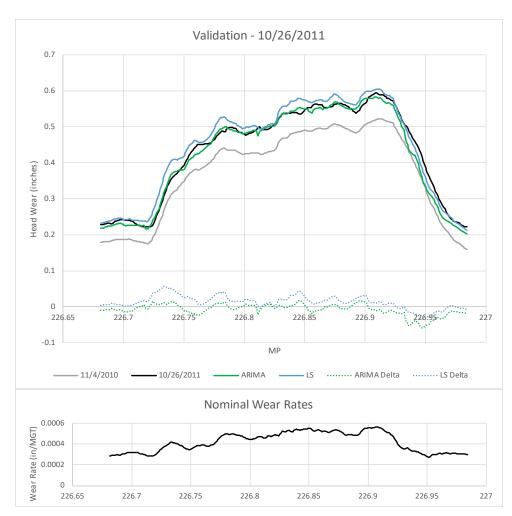
ARIMA(p, d, q) = model for describing time series data and for predicting future values


Handles calibration and measurement errors Converges to linear trend in most cases

Model developed from 570-804 MGT

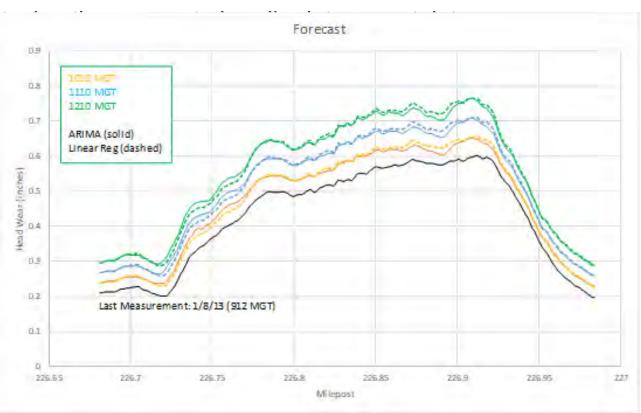
Forecast to 910 MGT to compare against next 3 measurements

ARIMA Application Process


- Perform ARIMA process for each milepost of up-sampled data
- ARIMA factors (p, d, q) unique for each milepost
- Linear trend unique for each milepost
- Predict wear to defined MGT value

Validation – Entire curve

- Model developed based on 7 inspections from 3/14/07 to 11/4/10
- Predict for next inspection date; 10/26/2011
- ARIMA prediction shows very good agreement to actual
- Linear regression (LS) tends to overstate

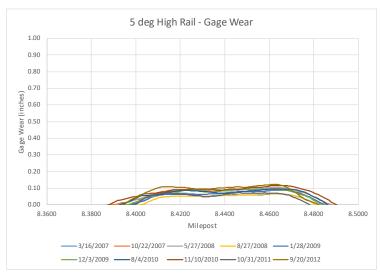

	ARIMA	LS
Min (in)	-0.0586	-0.0331
Max (in)	0.0180	0.0564
Avg (In)	-0.0080	0.0131
SD (in)	0.0159	0.0180

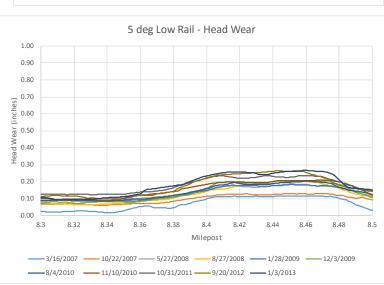
58 MGT (one year) produced 0.035" to 0.075" (average of 0.057") of head wear in curve

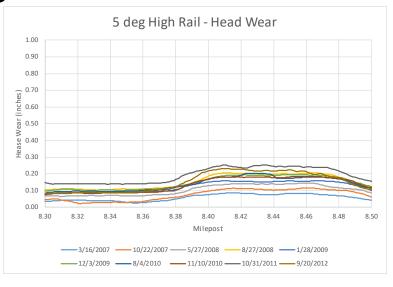
ARIMA Forecast Example

- Traditional forecast uses mean or mean+SD of full body of curve (or segment) to determine rate of wear
- Wear rate non-uniform through curve
- Ability to forecast wear profile in curve
- Take advantage of s

Case Study

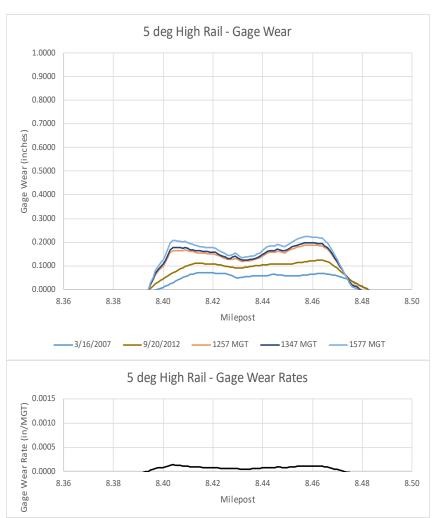

Two separate curves studied

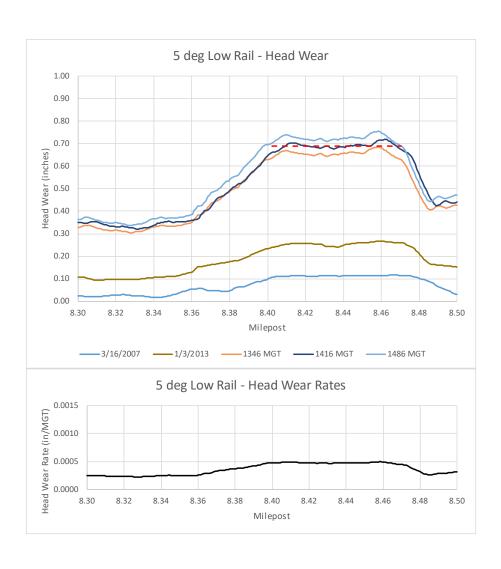

Rail	Length	Deg	SE	RI Wt	Speed	Installed
1	634	5	1.5	141	25	2002
2	1795	7.25	1.75	141	25	2002


Forecast to:

- First instance a point in the full body would reach the limit
- 50% of full body reaches limit
- 100% of full body reaches limit
- Based on 11/16" wear limit (head and gage)

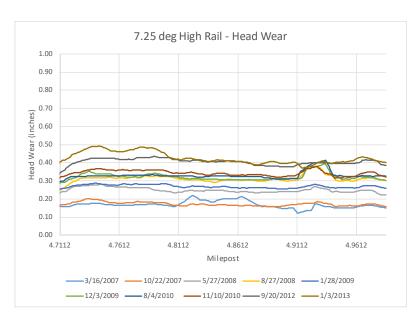
5 Degree Curve

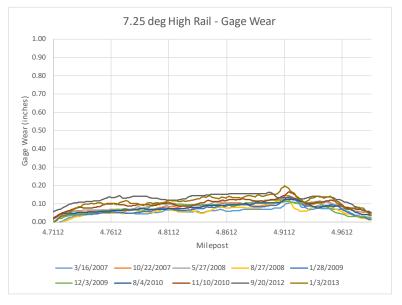


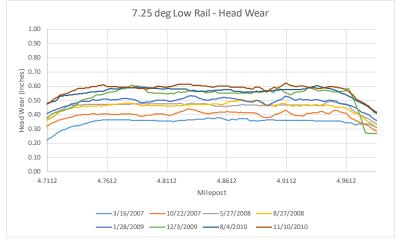


5 Degree Curve – High Rail Forecast

5 Degree Curve – Low Rail Forecast

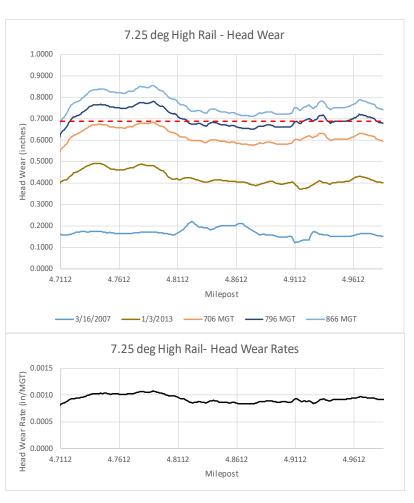


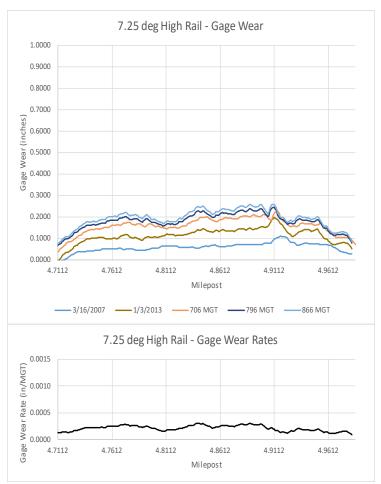

5 Degree Curve Summary

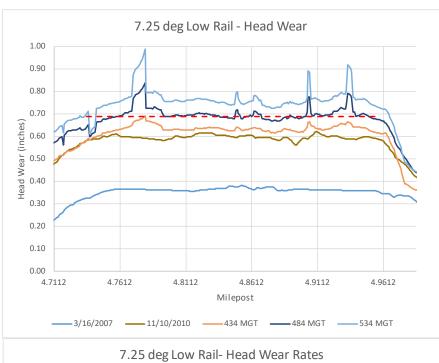

- High rail head wear has most severe rate
- Out paces gage face wear
- Similar to low rail head wear rate
- Head wear controls replacement
- Replace rail in year 2038 2045
 - Based on railroads determination of "failure"
- Both rails due between 2041-2045
 - Savings associated with replacing both rails at same time

	Wear R	Wear Rates (in/100MGT)				
	5	5 Deg Curve				
	High I	High Rail				
	<u>Head</u>	<u>Gage</u>	<u>Head</u>			
Minimum	0.0427	0.0003	0.0448			
Maximum	0.0574	0.0137	0.0499			
Average	0.0515	0.0081	0.0479			
Std Dev	0.0036	0.0028	0.0011			
	Cumulative MGT to Head Wear Lim					
	High Rail		Low Rail			
First Hit	1257		1346			
50%	1347		1416			
100%	1577		1486			
	Replaceme	Replacement Date (30 MGT/Yr)				
	High Rail		Low Rail			
First Hit	4/21/2038		4/4/2041			
50%	4/20/2041		8/4/2043			
100%	12/17/2048		12/2/2045			

7.25 Degree Curve






 Note average wear of 0.60" is close to limit of 0.69" as of last measurement (Nov. 2010)

7.25 Degree Curve – High Rail Forecast

7.25 Degree Curve – Low Rail Forecast

7.25 deg Low Rail- Head Wear Rates

0.0015
0.0010
0.0000
0.0000
4.7112
4.7612
4.8112
4.8612
4.9112
4.9612
Milepost

- ARIMA forecast model has some inconsistencies at several locations
- These are currently being investigated

7.25 Degree Curve Summary

- High rail head wear out paces gage face wear
- Low rail head wear has most severe rate
- Head wear controls replacement
- Replace high rail in year 2019 2025
 - Based on railroads determination of "failure"
- Replace low rail in year 2011 2014
 - Last measurement in 2010
 - Rail actually replaced prior to September 2012 where next two inspections show minimal wear

	Wear Rates (in/100MGT)				
	7.25 Deg Curve				
	High I	Low Rail			
	<u>Head</u>	<u>Head</u>			
Minimum	0.0823	0.0092	0.1133		
Maximum	0.1074	0.0311	0.1390		
Average	0.0932	0.0211	0.1273		
Std Dev	0.0069	0.0053	0.0060		
(Cumulative MGT to Head Wear Lir				
	<u>High Rail</u>	Low Rail			
First Hit	706		434		
50%	796		484		
100%	866		534		
	Replacement Date (30 MGT/Yr)				
	<u>High Rail</u>		Low Rail		
First Hit	12/9/2019		6/20/2011		
50%	12/8/2022		2/17/2013		
100%	4/8/2025		10/19/2014		

Rail Lives

	5 Deg Curve		7.25 Deg Curve		Curve
	<u>High Rail</u>	Low Rail	High Rail		Low Rail
Cumulative MGT					
at time of last					
measurement	489	498	498		416
MGT Remaining					
(50% Limit)	858	918	298		68
Life (MGT)	1347	1416	796		484

- Sharp curve low rail exhibiting very low life (< 500 MGT)
- Sharp curve high rail exhibiting reasonable life (800 MGT)
 - Due to head wear
 - Gage face wear being controlled
- Moderate Curve high/low rails exhibiting good lives (1350 – 1400 MGT)
 - Due to head wear

- 7.25 degree curve high rail wears faster than 5 degree curve
 - 2x for head
 - 3x for gage
- Head wear outpaces gage wear on high rail
- Low rail head wear dominant on severe curves
- Significant time (MGT) difference to replacement based on first hit, 50% of curve, 100% of curve
 - 3 to 10 year difference in remaining "life"

Conclusions

- Good longitudinal alignment of wear data allows for better understanding of wear rate distribution
- ARIMA stochastic process allows for refinement of wear forecasting
 - More accurate than Least Squares Linear Regression
- Approach allows for defining wear renewal forecast based on wear distribution in curve
 - 1st point, 50%, 100% past wear limit
- Process validated and case study presented

Future Research

- Determine applicability to combined wear parameters
 - Head and Gage
 - Head area loss
- Extend approach to transverse rail profile forecasting
 - Allow for forecasting of rail profile grinding
- Develop comprehensive wear equation
- Develop wear rate distribution analysis
 - Highlight geometry, unbalance issues
 - Identify lubrication effectiveness/implementation

Acknowledgements

 Research funded by US Department of Transportation, University Transportation Center program, (RailTeam UTC)