Overview of Track Maintenance Planning

Dr. Allan M Zarembski, PE

Professor

Director of the Railroad Engineering and Safety Program

University of Delaware

dramz@udel.edu

Railroad Engineering and Maintenance

- Evolution of railroad track, and key components, paralleled by evolution in railroad engineering
- Early railroad engineering focused on "building" the railroad
 - Strong emphasis on construction techniques, bridge and tunnel engineering and route alignment engineering
- Modern railroad engineering focused on improved analytical tools, better designs, and improved maintenance procedures
 - Improve track structure's strength and ability to carry heavy loads
 - To last longer and perform more efficiently
- Dependent of traffic type and characteristics
 - Axle load, Speed, Density of traffic

Purpose of Railroad Track Structure

- Support the loads of cars and locomotives
- Guide their movement

Function: Withstand and Distribute Loads

Pyramid of Bearing Stresses

Wheel/Rail Contact Stress ~100,000 psi/13.3 MPa

Rail Bending Stress * <25,000 psi / 3.3 MPa

Tie Bearing Stress * <200 psi/26.6 kPa

Ballast Bearing Stress* <85 psi/11.3 kPa

Subgrade Bearing Stress* <20 psi/2.6 kPa

Focus of Engineering Analysis

- Strength of the track and its components
 - Ability to resist catastrophic failure
- Ability to resist long term degradation or deterioration
 - Maintain geometric integrity
 - Reduce/control maintenance requirements over extended periods
 - Extend the life of track components
 - Reduce/control rate of track degradation
 - Identify/rectify problems before catastrophic failure

Railroad Engineering

- Current practice can be divided into two broad categories
 - Design based engineering
 - Maintenance based engineering
- Difference in focus and approach
 - Railroad design engineers primarily concerned with building new track
 - Railroad maintenance personnel being primarily concerned with maintaining existing track
 - Major focus today

Design Based Engineering:

- Design based engineering concerned with track systems, subsystems, or individual components
- "Standardized" tools presented by AREMA Manual for Railroad Engineering
- "Modern" railroad engineering starts with Beam On Elastic Foundation (BOEF) theory
 - Treats track structure as rail beam sitting on a continuous linear elastic foundation (k)
 - · Representing the cross-ties, ballast and subgrade
 - Calculate rail stresses and deflections
 - Tie pressures

Beam on Elastic Foundation Model

$$EI\frac{d^4w(x)}{dx^4} + kw(x) = q(x)$$

$$w(x) = \frac{P\beta}{2k} e^{-\beta x} \left[\cos(\beta x) + \sin(\beta x) \right]$$

$$M(x) = \frac{P}{4\beta} e^{-\beta x} \left[\cos(\beta x) - \sin(\beta x) \right]$$

Maintenance Based Engineering

- Maintenance based engineering is concerned with existing track and how to optimize its performance
 - long term railroad environment
 - increasing loads
- Focus is usually on specific component or subsystems
 - Different focus for HAL freight and high speed passenger
- Engineering analyses and studies in conjunction with empirical development of maintenance practices
- Maintenance engineering focus of last 40 years
 - Under heavy axle load operations, rail represents highest maintenance and replacement cost area for track structure
 - Under high speed passenger operations; track geometry represents highest maintenance cost area
- Safety is a major area of concern

Railroad Load Environment

- Vertical Loadings
 - From railway vehicles
 - Basis for design engineering
- Lateral Loadings
 - From railway vehicles
- Longitudinal Loadings
 - From railway vehicles
 - From environment (temperature effects)

Static Wheel Loads - Worldwide

Axle Load		Gross Weight of Cars		T., CC . T.
Tonnes	Tons	kN	lb.	Traffic Type
8	8.8	310	70,000	Light Rail Transit
12	13.2	470	106,000	Heavy Rail Transit
17	19	670	150,000	Passenger
22.5	25	880	198,000	Common European Freight Limit
25	27.5	980	220,000	UK+Select European Freight
30	33	1170	263,000	BV (Sweden) limit on Ore Line
32.5	36	1270	286,000	North America Free Interchange
36	39	1400-	315,000-	Limited use in US
41	45	1600	360,000	Max in Australia Iron Ore Lines

Dynamic loads can be 3+ times static load Current AAR dynamic wheel load limit is 90,000 lbs (400 kN)

Heavy Axle Load Freight Train

Heavy Axle Load Track Issues

- Design of track to allow for heavy axle loads
 - Minimum grades
 - Grades < 3%
 - Elevation
 - Issue for mixed passenger and freight traffic
 - High load/stress environment
 - Rapid degradation of track components
 - Potential for catastrophic failure/derailments
- Track maintenance
 - Focus on component degradation and failure
 - Needs for long lived components
 - Need for effective maintenance planning and management

High Speed Rail

High Speed Rail

- Speed has a major effect on loading and track system requirements
- "Very" High speed rail defined as speeds greater than 180 mph
 - Highest operating speeds 350 kph (210+mph)
- High speed rail is defined at 125 to 160 mph
 - FRA Class 8
 - Highest speed in US 150 mph (Amtrak NE Corridor)
- FRA Speed categories
 - Class 5 track with passenger train speeds up to 90 mph
 - Class 6 track operating at 90 to 110 mph
 - Class 7 track operating at 110-125 mph
 - Class 8 track operating at 125-160 mph
 - Class 9 track operating at 160-220 mph

High Speed Track Issues

- Design of track to allow for higher speed passenger traffic
 - Minimum curvature
 - Curves < 2 degrees (3000 foot radius)
 - High elevation (6 inches)/ unbalance (>4')
 - Issue for mixed passenger and freight traffic
 - Tight track geometry requirements
 - Uniform track support
 - Enhanced grade crossing protection
- Track maintenance
 - Focus on track geometry maintenance
 - Significant costs necessary to maintain track for mixed higher speed passenger and freight operations

Maintenance and Maintenance Planning

- Maintenance is primary focus of existing railway track
- Maintenance approaches
 - Interval based maintenance
 - Time
 - MGT
 - Mileage
 - Condition based maintenance
 - By component
 - By subsystem
 - Tie/fastener
 - Entire track
 - Used when train delay is critical issue
 - Scheduling and Planning key

Maintenance Planning Objectives

- What is in track now?
 - Data Base
 - Ongoing track inspection
- What will I need?
 - Next year (short term)
 - Two to Five years (medium term)
 - Five to Ten+ Years (long term)
- Maintenance Requirement Forecasting
 - Components (Rail, Ties, Ballast)/Dollars
- What should be done first?
 - Prioritization of needs
 - Adjust to changing budgets
 - Ability to Expand/Contract Budget
 - Decision making tools

Maintenance Planning Overview

- System Condition and Defects/Exceptions
- Rail
 - Rail Replacement Forecasting
 - Fatigue Life
 - Wear Life
 - Grinding Requirements/Planning
 - Rail Test Scheduling
- Ties
 - Replacement Analysis
 - Degradation/Forecasting
- Surfacing
 - Spot Maintenance Requirements
 - Forecasting Surfacing Cycles
- Track System Approach
 - Resource Allocation

Projected Wear on 5 Degree Curve

Consolidated Rail Requirement Forecast

Projected Track Geometry Degradation

- Three track segments
 - Highly fouled (red)
 - Moderately fouled (yellow)
 - Relatively clean (green)

Data Analytics Based Geometry Forecasting Model

Galván-Núñez, S. (2017). Hybrid Bayesian-Wiener Process in Track Geometry Degradation Analysis. Ph.D. Thesis. University of Delaware.

Cross-Tie Needs Forecast

■ 10% Avg Life — 0% Avg Life

Maintenance Planning Approaches

- Traditional ("old time railroading")
 - Visual inspection
 - Written reports from the field
 - Consolidation at headquarters and Verification
 - Determination of resource requirements
- Current
 - Extensive use of automated inspection systems
 - Continued use of visual inspection/tack inspectors
 - Analysis of exception reports
 - Use of early generation planning models
- Emerging
 - Increased reliance on automated inspection systems
 - Expanded analysis of data from inspection systems
 - Data Analytics/"Big Data"
 - New generation maintenance forecasting and planning models
 - Improved resource need forecasting and allocation

Currently Available Track Inspection Data

- Track Inspectors (visual)
- Track Geometry Cars
 - Manned
 - Autonomous
- Dynamic load measurements (e.g. VTI)
- Ride Quality (accelerometers)
- Ultrasonic Rail Test Cars (rail Defects)
- Rail Surface Condition Measurements/Corrugations
- Rail Profiles/ Wear (ORIAN, LaseRail,...)
- Tie Condition Data (e.g. Aurora)
- Ground Penetrating Radar based Ballast condition
- Track support/stiffness (M-Rail)
- Automated Turnout Inspection (e.g. ASIV)

Use of Data

- Inspection data can be analyzed and compared with past and future data
- Key issue is converting "lots of data" into "information"
 - Growing use of Data Analytics ("Big Data")
- Develop degradation and forecasting models
- Develop relationship models between track components and systems
- Develop tools to help make maintenance more efficient

Use of Information

- Identify immediate maintenance needs
 - Short term maintenance
 - Safety focus
 - Extensive use of exception reports
 - Safety/maintenance thresholds
- Plan intermediate and long term maintenance requirements
 - Project track degradation
 - Develop track degradation models
 - Determine maintenance requirements
 - Develop maintenance plan

Elements of an Effective Maintenance Planning System

- a) Track Inspection Data both visual (subjective) and measured (objective). Track geometry, flaw detection and other inspection vehicles represent specific examples of the latter class of data.
- b) Track Data Base a consolidation of the track information, inspection data, maintenance history and other information into one central, accessible (computer) database.
- c) Track Deterioration Analyses relationships that predict the deterioration and/or failure of the key track components and subsystems, based on the information in (a) and (b).
- d) Maintenance Requirement Forecasts the resulting output of the track deterioration analyses applied to the track segments within the database.
- e) Policy and Controls guidelines that define the application of maintenance procedures to the individual maintenance requirements forecast above.
- f) Costs economic and financial constraints imposed upon maintenance activities.
- g) Maintenance Programs short-term and long-term work programs.

Summary

- Railroads are moving onto a new era of maintenance management and planning
- Increasing use of multiple inspection systems with a broad range of condition information
- Development of new generation of Data Analytic tools to convert data into useable information
- Degradation, forecasting and planning models will improve maintenance planning in the intermediate and long term
- Allow for improved maintenance practices and reduced costs