Overview of Track Maintenance Planning

Dr. Allan M Zarembski, PE
Professor
Director of the Railroad Engineering and Safety Program
University of Delaware
dramz@udel.edu
Railroad Engineering and Maintenance

- Evolution of railroad track, and key components, paralleled by evolution in railroad engineering
- Early railroad engineering focused on “building” the railroad
 - Strong emphasis on construction techniques, bridge and tunnel engineering and route alignment engineering
- Modern railroad engineering focused on improved analytical tools, better designs, and improved maintenance procedures
 - Improve track structure’s strength and ability to carry heavy loads
 - To last longer and perform more efficiently
- Dependent of traffic type and characteristics
 - Axle load, Speed, Density of traffic
Purpose of Railroad Track Structure

• Support the loads of cars and locomotives
• Guide their movement
Function: Withstand and Distribute Loads
Pyramid of Bearing Stresses

- **Wheel/Rail Contact Stress**: ~100,000 psi/13.3 MPa
- **Rail Bending Stress**: <25,000 psi / 3.3 MPa
- **Tie Bearing Stress**: <200 psi/26.6 kPa
- **Ballast Bearing Stress**: <85 psi/11.3 kPa
- **Subgrade Bearing Stress**: <20 psi/2.6 kPa
Focus of Engineering Analysis

- Strength of the track and its components
 - Ability to resist catastrophic failure
- Ability to resist long term degradation or deterioration
 - Maintain geometric integrity
 - Reduce/control maintenance requirements over extended periods
 - Extend the life of track components
 - Reduce/control rate of track degradation
 - Identify/rectify problems before catastrophic failure
Railroad Engineering

• Current practice can be divided into two broad categories
 – Design based engineering
 – Maintenance based engineering

• Difference in focus and approach
 – Railroad design engineers primarily concerned with building new track
 – Railroad maintenance personnel being primarily concerned with maintaining existing track
 • Major focus today
Design Based Engineering:

- Design based engineering concerned with track systems, subsystems, or individual components
- “Standardized” tools presented by AREMA Manual for Railroad Engineering
- “Modern” railroad engineering starts with Beam On Elastic Foundation (BOEF) theory
 - Treats track structure as rail beam sitting on a continuous linear elastic foundation (k)
 - Representing the cross-ties, ballast and subgrade
 - Calculate rail stresses and deflections
 - Tie pressures
Beam on Elastic Foundation Model

\[EI \frac{d^4 w(x)}{dx^4} + kw(x) = q(x) \]

\[w(x) = \frac{P \beta}{2k} e^{-\beta x} \left[\cos(\beta x) + \sin(\beta x) \right] \]

\[M(x) = \frac{P}{4\beta} e^{-\beta x} \left[\cos(\beta x) - \sin(\beta x) \right] \]
Maintenance Based Engineering

- Maintenance based engineering is concerned with existing track and how to optimize its performance
 - long term railroad environment
 - increasing loads
- Focus is usually on specific component or subsystems
 - Different focus for HAL freight and high speed passenger
- Engineering analyses and studies in conjunction with empirical development of maintenance practices
- Maintenance engineering focus of last 40 years
 - Under heavy axle load operations, rail represents highest maintenance and replacement cost area for track structure
 - Under high speed passenger operations; track geometry represents highest maintenance cost area
- Safety is a major area of concern
Railroad Load Environment

• Vertical Loadings
 – From railway vehicles
 – Basis for design engineering

• Lateral Loadings
 – From railway vehicles

• Longitudinal Loadings
 – From railway vehicles
 – From environment (temperature effects)
Static Wheel Loads - Worldwide

<table>
<thead>
<tr>
<th>Axle Load</th>
<th>Gross Weight of Cars</th>
<th>Traffic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonnes</td>
<td>Tons</td>
<td>kN</td>
</tr>
<tr>
<td>8</td>
<td>8.8</td>
<td>310</td>
</tr>
<tr>
<td>12</td>
<td>13.2</td>
<td>470</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>670</td>
</tr>
<tr>
<td>22.5</td>
<td>25</td>
<td>880</td>
</tr>
<tr>
<td>25</td>
<td>27.5</td>
<td>980</td>
</tr>
<tr>
<td>30</td>
<td>33</td>
<td>1170</td>
</tr>
<tr>
<td>32.5</td>
<td>36</td>
<td>1270</td>
</tr>
<tr>
<td>36</td>
<td>39</td>
<td>1400-</td>
</tr>
<tr>
<td>41</td>
<td>45</td>
<td>1600</td>
</tr>
</tbody>
</table>

Dynamic loads can be 3+ times static load
Current AAR dynamic wheel load limit is 90,000 lbs (400 kN)
Heavy Axle Load Freight Train
Heavy Axle Load Track Issues

• Design of track to allow for heavy axle loads
 – Minimum grades
 • Grades < 3%
 – Elevation
 • Issue for mixed passenger and freight traffic
 – High load/stress environment
 • Rapid degradation of track components
 • Potential for catastrophic failure/derailments

• Track maintenance
 – Focus on component degradation and failure
 – Needs for long lived components
 – Need for effective maintenance planning and management
High Speed Rail
High Speed Rail

• Speed has a major effect on loading and track system requirements
• “Very” High speed rail defined as speeds greater than 180 mph
 – Highest operating speeds 350 kph (210+mph)
• High speed rail is defined at 125 to 160 mph
 – FRA Class 8
 – Highest speed in US 150 mph (Amtrak NE Corridor)
• FRA Speed categories
 – Class 5 track with passenger train speeds up to 90 mph
 – Class 6 track operating at 90 to 110 mph
 – Class 7 track operating at 110-125 mph
 – Class 8 track operating at 125-160 mph
 – Class 9 track operating at 160-220 mph
High Speed Track Issues

• Design of track to allow for higher speed passenger traffic
 – Minimum curvature
 • Curves < 2 degrees (3000 foot radius)
 – High elevation (6 inches)/ unbalance (> 4’)
 • Issue for mixed passenger and freight traffic
 – Tight track geometry requirements
 – Uniform track support
 – Enhanced grade crossing protection

• Track maintenance
 – Focus on track geometry maintenance
 – Significant costs necessary to maintain track for mixed higher speed passenger and freight operations
Maintenance and Maintenance Planning

- Maintenance is primary focus of existing railway track
- Maintenance approaches
 - Interval based maintenance
 - Time
 - MGT
 - Mileage
 - Condition based maintenance
 - By component
 - By subsystem
 - Tie/fastener
 - Entire track
 - Used when train delay is critical issue
 - Scheduling and Planning key
Maintenance Planning Objectives

• What is in track now?
 – Data Base
 – Ongoing track inspection

• What will I need?
 – Next year (short term)
 – Two to Five years (medium term)
 – Five to Ten+ Years (long term)

• Maintenance Requirement Forecasting
 – Components (Rail, Ties, Ballast)/Dollars

• What should be done first?
 – Prioritization of needs
 • Adjust to changing budgets
 – Ability to Expand/Contract Budget
 – Decision making tools
Maintenance Planning Overview

• System Condition and Defects/Exceptions
• Rail
 – Rail Replacement Forecasting
 • Fatigue Life
 • Wear Life
 – Grinding Requirements/Planning
 – Rail Test Scheduling
• Ties
 – Replacement Analysis
 – Degradation/Forecasting
• Surfacing
 – Spot Maintenance Requirements
 – Forecasting Surfacing Cycles
• Track System Approach
 – Resource Allocation
Projected Wear on 5 Degree Curve

5 deg High Rail - Head Wear

5 deg High Rail - Head Wear Rates
Consolidated Rail Requirement Forecast

![Graph showing historical and forecasted rail requirements](image-url)
Projected Track Geometry Degradation

- Three track segments
 - Highly fouled (red)
 - Moderately fouled (yellow)
 - Relatively clean (green)
Data Analytics Based Geometry Forecasting Model

Cross-Tie Needs Forecast
Maintenance Planning Approaches

- Traditional ("old time railroading")
 - Visual inspection
 - Written reports from the field
 - Consolidation at headquarters and Verification
 - Determination of resource requirements

- Current
 - Extensive use of automated inspection systems
 - Continued use of visual inspection/tack inspectors
 - Analysis of exception reports
 - Use of early generation planning models

- Emerging
 - Increased reliance on automated inspection systems
 - Expanded analysis of data from inspection systems
 - Data Analytics/"Big Data"
 - New generation maintenance forecasting and planning models
 - Improved resource need forecasting and allocation
Currently Available Track Inspection Data

- Track Inspectors (visual)
- Track Geometry Cars
 - Manned
 - Autonomous
- Dynamic load measurements (e.g. VTI)
- Ride Quality (accelerometers)
- Ultrasonic Rail Test Cars (rail Defects)
- Rail Surface Condition Measurements/Corrugations
- Rail Profiles/ Wear (ORIAN, LaseRail, …)
- Tie Condition Data (e.g. Aurora)
- Ground Penetrating Radar based Ballast condition
- Track support/stiffness (M-Rail)
- Automated Turnout Inspection (e.g. ASIV)
Use of Data

• Inspection data can be analyzed and compared with past and future data
• Key issue is converting “lots of data” into “information”
 – Growing use of Data Analytics (“Big Data”)
• Develop degradation and forecasting models
• Develop relationship models between track components and systems
• Develop tools to help make maintenance more efficient
Use of Information

• Identify immediate maintenance needs
 – Short term maintenance
 – Safety focus
 – Extensive use of exception reports
 • Safety/maintenance thresholds
• Plan intermediate and long term maintenance requirements
 – Project track degradation
 • Develop track degradation models
 – Determine maintenance requirements
 – Develop maintenance plan
Elements of an Effective Maintenance Planning System

a) *Track Inspection Data* - both visual (subjective) and measured (objective). Track geometry, flaw detection and other inspection vehicles represent specific examples of the latter class of data.

b) *Track Data Base* - a consolidation of the track information, inspection data, maintenance history and other information into one central, accessible (computer) database.

c) *Track Deterioration Analyses* - relationships that predict the deterioration and/or failure of the key track components and subsystems, based on the information in (a) and (b).

d) *Maintenance Requirement Forecasts* - the resulting output of the track deterioration analyses applied to the track segments within the database.

e) *Policy and Controls* - guidelines that define the application of maintenance procedures to the individual maintenance requirements forecast above.

f) *Costs* - economic and financial constraints imposed upon maintenance activities.

g) *Maintenance Programs* - short-term and long-term work programs.
Summary

• Railroads are moving onto a new era of maintenance management and planning
• Increasing use of multiple inspection systems with a broad range of condition information
• Development of new generation of Data Analytic tools to convert data into useable information
• Degradation, forecasting and planning models will improve maintenance planning in the intermediate and long term
• Allow for improved maintenance practices and reduced costs