Scalable, web-delivered supports to help students “Learn to Learn”

Matthew L. Bernacki
University of Nevada Las Vegas

PROJECT OVERVIEW: Learning Theory and Analytics as Guides to Improve Undergraduate STEM Education (Learning TAGs)

The Need

- Many graduate K-12 without skills necessary to manage learning (ACT, 2008)
- Incoming STEM majors typically fail to complete a STEM degree; more pronounced trend in underrepresented populations (Eagen, Hurtado & Chen, 2006)
- Ongoing trace data on student learning behaviors collected from University servers using Splunk application, performance data from LMS gradebook
- Primary reasons for leaving STEM include: perceived lack of skills to perform critical STEM tasks, lack of motivation to continue with training (Perez, Cromley & Kaplan, 2013)

The Project

- Learning management systems (LMSs) are ubiquitous in higher education, provide a platform for scalable, web-delivered support (Eagen, Hurtado & Chen, 2006)
- Learning sciences provide insight about ways learning skills can be built and motivation can be supported
- Learning TAGs + Analytics provide an opportunity to:
 1. Provide resources to students
 2. Teach students how to use resources effectively
 3. Observe & adaptively respond to student learning data
 - Prompt to evaluate course resources that afford use of the learning principle
 - Plans study: set goals & subgoals, enact strategies
 - Develop prediction models that accurately identify students likely to struggle, obtain poor grades
 - Provide adaptive, personalized feedback to students via the LMS, directing resources to those likely to struggle

THE SCIENCE OF LEARNING TO LEARN

- Web-delivered set of training modules delivered via LMS
- Embedded in students’ course site, teach students (in 30-45 min per module):
 1. Cognitive strategies known to improve learning outcomes
 2. Methods of managing their learning process
 3. Methods of managing self, behaviors, & one’s environment
- Instructional methods aligned to research on learning (Table 1)
- Ongoing trace data on student learning behaviors collected from University servers using Splunk application, performance data from LMS gradebook
- Learning sciences provide insight about ways learning skills can be built
- Learning to Learn training had a demonstrable impact on biology students’ (N = 205) learning behavior & achievement in a lecture course
- Struggling students = students with poor prior exam scores = experienced the greatest benefits from Learning to Learn.
- NEW CHALLENGE: 1) Identify students who need help 2) Deliver timely help to them and only them
- A pilot project (underway) targets training to students in need.

RESULTS & FUTURE DIRECTIONS

Module 1: Introduction & Learning Principles

- Opening Vignette: Emily the struggling student

Module 2: Planning, Organizing & Monitoring Learning

- Training in self-regulated learning

Module 3: Regulating Behavior & Environment

- Regulate their environment to avoid distraction

Table 1

<table>
<thead>
<tr>
<th>Instructional Design of Science of Learning to Learn Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cognitive strategies known to improve learning outcomes</td>
</tr>
<tr>
<td>2. Methods of managing their learning process</td>
</tr>
<tr>
<td>3. Methods of managing self, behaviors, & one’s environment</td>
</tr>
</tbody>
</table>

EXAM 1

- Students identified as unlikely to earn a B or better are notified via the LMS about their potential for a poor outcome in Week 5 – a full week before they take their first exam – and are directed toward learning resources.

Funded by National Science Foundation Award # DRL-1420491

In kind support from UNLV Office of Information Technology

Contact: matt.bernacki@unlv.edu

More details can be found at: faculty.unlv.edu/wpmu/bernacki/

LMS behaviors.

RapidMiner and a prediction is using data mining tools like

undesirable grades (C or worse) desirable (B or Better) or

prior students who earned

Each student is compared to

learning resources.

Students’ activity in a LMS course site is monitored during the first 4 weeks of the semester using tools like Splunk and a prediction is made based on similarities in LMS behaviors.

Each student is compared to prior students who earned desirable (B or Better) or undesirable grades (C or worse) using data mining tools like RapidMiner and a prediction is made based on similarities in LMS behaviors.

Students identified as unlikely to earn a B or better are notified via the LMS about their potential for a poor outcome in Week 5 – a full week before they take their first exam – and are directed toward learning resources.

EXAM 1

- Students identified as unlikely to earn a B or better are notified via the LMS about their potential for a poor outcome in Week 5 – a full week before they take their first exam – and are directed toward learning resources.

LMS behaviors.

RapidMiner and a prediction is using data mining tools like

undesirable grades (C or worse) desirable (B or Better) or

prior students who earned

Each student is compared to

learning resources.

Students’ activity in a LMS course site is monitored during the first 4 weeks of the semester using tools like Splunk and a prediction is made based on similarities in LMS behaviors.

Each student is compared to prior students who earned desirable (B or Better) or undesirable grades (C or worse) using data mining tools like RapidMiner and a prediction is made based on similarities in LMS behaviors.

Students identified as unlikely to earn a B or better are notified via the LMS about their potential for a poor outcome in Week 5 – a full week before they take their first exam – and are directed toward learning resources.

EXAM 1

- Students identified as unlikely to earn a B or better are notified via the LMS about their potential for a poor outcome in Week 5 – a full week before they take their first exam – and are directed toward learning resources.

LMS behaviors.

RapidMiner and a prediction is using data mining tools like

undesirable grades (C or worse) desirable (B or Better) or

prior students who earned

Each student is compared to

learning resources.

Students’ activity in a LMS course site is monitored during the first 4 weeks of the semester using tools like Splunk and a prediction is made based on similarities in LMS behaviors.

Each student is compared to prior students who earned desirable (B or Better) or undesirable grades (C or worse) using data mining tools like RapidMiner and a prediction is made based on similarities in LMS behaviors.

Students identified as unlikely to earn a B or better are notified via the LMS about their potential for a poor outcome in Week 5 – a full week before they take their first exam – and are directed toward learning resources.