Natural Resources, Climate, and Clean Energy

Climate Science Research

Paleohydrology & Extreme Events

Bethany L. Coulthard
Assistant Professor
Department of Geoscience
bethany.coulthard@unlv.edu

Using tree rings to study the influence of climate change on global water cycles relevant to human populations and ecosystems, with an emphasis on freshwater runoff, snowpacks, and forest hydrology.

- Examination of past and future snow droughts across the western North American cordilleras.
- Reconstructing extreme (flood/drought) events in the Fraser Basin, BC, Canada.

ON MISSOURI RIVER COLUMBIA RIVER NADA COULTHARD NAM2k 1409

Western North American Paleosnow Network

Sedimentary Geology

Dr. Ganqing Jiang

Professor

Department of Geoscience

Phone: (702) 895-2708

Email: Ganqing.Jiang@unlv.edu

Expertise:

- Sequence and chemostratigraphy
- sedimentology
- Carbonate diagenesis

- Sequence and chemostratigraphy
- Paleogeographic reconstruction
- Applications of stable isotopes and rare earth elements
- Paleoenvironmental change across major perturbations of the carbon cycle and mass extinctions

- Basin analyses and paleoceanography
- Fluid migration and carbonate diagenesis
- Tracing fluid migration in sedimentary basins using stable isotopes and trace elements
- Carbonate aquifer

Climate Science and Paleoclimatology

Matthew S. Lachniet

Professor

Department of Geoscience

Phone 702-895-4388

Matthew.Lachniet@unlv.edu

Paleoclimatology

- Study of the causes, timing, and consequences of climate change on timescales ranging from decades to millennia
- Cause of aridity in the Great Basin and Western United States
- Influence of ocean temperatures on precipitation in Nevada
- Cave archives of past climate with sites in Nevada, Mexico,
 Central America, and elsewhere

Dryland ecology, hydrology and climate dynamics

Dr. Matthew Petrie

Assistant Professor

School of Life Sciences

ph: 702-895-5844

e: matthew.petrie@unlv.edu

Expertise:

- Vegetation ecology and near-surface hydrology
- Forest regeneration
- Climate dynamics and climate change forecasting
- Extreme events
- Landscape ecology
- Manipulative field experimentation

Linking extreme climate events and ecological dynamics across space and time

Above: Disentangling locally- and regionally-observed ecological responses to multiyear high and low rainfall periods. Multiyear periods are a key component of understanding climate impacts to arid and semiarid regions. Our research focuses on the physical mechanisms that shape ecological responses, providing a foundation for understanding the effects of local and regional extreme events in a changing climate.

Forecasting climate change impacts

Above: Natural forest regeneration may decline st substantially throughout the western US in the 21 century. We study how climate, landscape properties, and the stress tolerance of tree populations will shape the future of western forests.

Left: Forecasts for increasing belowground extreme temperature events in a changing climate. We use downscaled climate model projections to forecast the increasing occurrence of moderate $(0-\sigma)$ and very high $(2-\sigma)$ extreme temperature events throughout multiple depths in the soil profile for ecosystems of the central and western US.

Climate Change; Renewable Energy; Astronomy

Dr. George Rhee

Department of Physics and Astronomy

Phone: (702) 895-4453

email: grhee@physics.unlv.edu

Expertise

- Observational Astronomy/Cosmology
- Renewable Energy
- Colorado River Flow Projections

Climate Change

River flow projections using statistics from tree ring data from the upper Colorado River Basin. Gaussian processes with known covariance can be used to predict properties of river flows. Figure shows predictions for Colorado river flow 2015-2050.

Renewable Energy

Created an online calculator allowing the user to choose supply and demand options to make plans to zero out emissions in Nevada by 2050.

http://nv2050.physics.unlv.edu/. I

Interview on KPNR and writeup describing the idea:

https://knpr.org/desert-companion/2018-12/do-math

Supply Choices
Nuclear Energy (no nuclear energy ever
Wind energy add two new wind farms by 2050
Hydroelectric power Lake Mead dries up by 2030 and generation stops
Geothermal Energy increase generation by 3% per year
Rooftop Solar power keep rooftop solar at its 2015 value
Solar PV power plants solar PV increases by 10 percent a year to 2050
Concentrating Solar Power build one new Tonopah plant every ten years
Solar Thermal (hot water) increase to 10% of demand by 2050
Electricity imports keep electricity imports at 0.15 GW
Carbon Capture and Storage no CCS, business as usual

Demand Choices
International aviation factor of three increase in international visitors by 2050
Nevada transport electrify transport completely by 2050
Nevada freight business as usual freight travels by road
Industry growth energy demand increases by 1.5% per year
Commercial heating and cooling. 5% increase in efficiency
Commercial light and appliances. energy demand increases by 25% by 2050
Home heating and cooling (energy demand increases by 1.5% per year
Home lighting and appliances electricity demand increases by 70% from 2015 to 2050 ❖
Home insulation no extra effort on home insulation
Average home temperature no thermostat adjustment

Astrophysics

Interested in:

Dark matter distribution in galaxies inferred from the rotation of neutral hydrogen gas in disks

Properties of galaxies in extreme low density environments (voids)

Measuring the masses of black holes using the variability of the central region in Seyfert galaxies and quasars. spectral and brigtness measurements

