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ABSTRACT

Track geometry data exhibits classical big data attributes: value, volume, velocity, veracity and
variety. Track Quality Indices-TQI are used to obtain average-based assessment of track segments
and schedule track maintenance. TQI is expressed in terms of track parameters like gage, cross
level, etc. Though each of these parameters is objectively important but understanding what they
collectively convey for a given track segment often becomes challenging. Several railways
including passenger and freight have developed single indices that combines different track
parameters to assess overall track quality. Some of these railways have selected certain parameters
whilst dropping others. Using track geometry data from a sample mile track, we demonstrate how
to combine track geometry parameters into a low dimensional form (TQI) that simplifies the track
properties without losing much variability in the data. This led us to principal components. To
validate the use of principal components as TQI, we employed a two-phase approach. First phase
was to identify a classic machine learning technique that works well with track geometry data. The
second step was to train the identified machine learning technique on the sample mile-track data
using combined TQIs and principal components as defect predictors. The performance of the
predictors was compared using true and false positive rates. The results show that three principal
components were better at predicting defects and revealing salient characteristics in track geometry
data than combined TQIs even though there were some correlations that are potentially useful for
track maintenance.

Keywords: Rail Infrastructure, Machine Learning, Track Quality Index, Data Science, Safety
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EXECUTIVE SUMMARY

This study examines the potential of machine learning applications in railway track engineering.
In this report, we investigate the possibility of reducing multivariate track geometry indices into a
low-dimensional form without losing much information. Similar to the Pavement Condition Index
in highways wherein weights are assigned to each parameter and then summed up (Karim et al.
2016).

However, author’s proposed approach takes cognizance of the fact the observed multidimensional
data often lies in an unknown subspace of two to three dimensions (Hastie et al. 2009). Hence,
detecting this subspace in track geometry data can significantly enable authors to eliminate
redundant information. This will make it possible to visualize multidimensional track geometry
data in two or three dimensions which was hitherto impossible with the raw parameters obtained
from track geometry cars. The second section of this report focuses on introducing track geometry
parameters, data collection and track quality indices. The third section considers selected machine
learning methods that are used to train, test and validate the use of single and combined track
quality indices including the proposed principal components. Low-dimensional representation of
multivariate track geometry parameters in terms of principal components was validated and
compared to existing TQIs in the penultimate section. The last section of this report highlights key
findings with concluding remarks.

This report formally described the work on principal components and track quality indices. To
summarize heterogeneous track geometry data, some railways assign weights to selected track
geometry parameter. This assignment is followed by the sum of all the products of the weights and
the parameters to arrive at a value that is used as a measure of overall track quality. While the
assigned weights are often subjective, the parameters selected vary from one railway to the other.
Also, relevant information is lost through neglected parameters and subjective weight assignment.
In order to prevent this, the use of principal components as combined TQIs was proposed in this
work. This made it possible to simplify track geometry data in a way that most of the variance in
the data is captured.

Table 3:Summary of Principal Components per Section 150ft and 500ft

IST PC 15T & 2ND PCs IST, 2ND & 3RD 1ST’ ZND, IST, 2ND’ 3RD’
PCs 3RD & 4TH | 4TH & 5TH
PCs PCs

Sections(150ft) | 4,5,8,15, | 6,9,10,11,12,13,14,17, | 1,2,7,19, 20,22, | 3,16,31 21

24,25,33 18, 26, 29, 30, 32, 35 23,27,28,34
%(Count) 20(7) 40(14) 28.57(10) 8.57(3) 2.86(1)
Sections(500ft) | 2,4,8,10 |3,9,11 1,5,6,7 NA NA
%(Count) 36.36(4) 27.27(3) 36.36(4) 0(0) 0(0)
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Figure 1: Correlogram of Single, Artificial Indices and Principal Components

The use of principal components as TQIs was tested using classical machine learning algorithms
and the following conclusions are highlighted: (1) With a sample mile track, > 90% variance in
the geometry data was explained by Ist 3 components in 100% of 500ft sections and 88% of 1501t
sections. The first principal component captured track variations in the vertical plane, the second
principal component in the longitudinal plane and the third correlated well with transverse
irregularities. This information can be used to plan maintenance activities such as tamping or
stone-blowing (1st PC and 2nd PC) as well as gage correction (3rd PC). (2) Support Vector
Machine (SVM) was the most effective learning tool for classifying track sections with geometry
defects among other selected machine learning tools; and (3) Using principal components and
other combined TQIs from different railways, SVM predicted track defects better with 3 principal
components and Canadian TQI than any other TQIs considered in this study. The prediction
performance was measured using TPR (True Positive Rate) and FPR (False Positive Rate) since
the defect data is highly unbalanced. This approach will help railways and track engineers assess
track geometry monitoring from a different perspective as a novel method of combined/artificial
TQI for maintenance scheduling. This work is a first step in incorporating dimension reduction in
track geometry data analysis using classical techniques. Future work will consider the development
of thresholds for principal components through correlation studies with vertical or lateral
accelerations on train; and the use of classifier fusion to obtain better predictions.



Because dimension reduction/feature extraction with machine learning have not been widely
adopted in track geometry data and analysis, there is great potential for optimized maintenance
scheduling under this approach.



INTRODUCTION

Track geometry is a description of the track in terms of its longitudinal (alignment), transverse
(gage) and vertical properties (surface/profile and cross level). Other track parameters combine
these track irregularities in two-dimensions or more, e.g. vertical and longitudinal (warp/twist).
Track quality index on the other hand is a quantitative representation of ride quality in an attempt
to distinguish a good track from a ‘bad’ one. At this point, it is important to distinguish between
track index, defects, irregularities and how they contribute to derailments. Firstly, tracks are laid
to meet very stringent construction standards. Wear and tear as a result of track usage and tonnage
results in deviations from construction standards. These deviations are often found in rails, track
geometry, structure, etc. Since track parameters are often defined by a nominal value which is the
characteristic of an ideal track.

Deviations from these nominal values develop into track irregularities (Ciobanu 2016). These
irregularities grow gradually until it reaches an unacceptable limit (maintenance threshold) that
requires intervention. Nominal values for a parameter beyond this limit defines a defect as seen in
Fig. 1. Track geometry defects left to propagate is likely to lead to derailments as discussed in
Section 1. To evaluate, assess and make decisions based on each parameter per unit length of track
is almost practically impossible because it results in tremendous data-points and hypersensitivities
in variations. Therefore, TQI is employed as an aggregate measure of a given track geometry
parameter over a specific length of track. Standard deviation, mean, power spectral density (PSD),
etc. are among the common average-based measures used as TQIs. Next, we discuss crucial track
parameters and track quality indices expressed in terms of individual parameters.

o,
Track defect ( | ) (1)
I T A A / e
.
7]
3
Nnminal%_
~Vale 5
: g

.
Track Quality Index (TQI)

Figure 2: Track quality indices, tolerances and defects (Ciobanu 2016)

DATA PREPROCESSING

The dataset collected from a Class 7 track initially existed in a matrix format for each track
parameter (e.g. Gage, Cross level, Alignment, Surface and Profile) in form of section lengths. We
will be considering two section lengths only, 150ft and 5001t length. Other section length could be
62ft, 1244t, 2001t or even a 1000ft. The total length of track is about 5270ft which is equivalent to
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about a mile. Therefore, the 150ft and 5001t section lengths are equivalent to 35 and 11 sections
respectively. For a 500ft section, the Gage parameter matrix for instance is an 11 by 28 matrix
where 11 stands for the number of sections and 28 represents number of inspection dates. Below
Table 1 is an example of a typical parameter matrix represented as TQIs (standard deviation values)
using the 150ft length.

Figure 3: A sample parameter matrix with 35 sections (150ft) and 28 inspection data.

A B c D E F G H I J K L M N
1 | 0.059?99! 0.061864 0.060197 0.058323 0.056592 0.059697 0.077568 0.077603 0.077886 0.07806 0.075433 0.055208 0.058491 0.063356
| 0.065605 0.033697 0.036298 0.039191 0.033058 0.039948 0.033053 0.033591 0.035318 0.033508 0.035762 0.037013 0.038903 0.037657
| 0.037132 0.025596 0.026045 0.026103 0.02616 0.027568 0.022861  0.0265 0.025851 0.023658 0.02678 0.030535 0.028031 0.032936
| 0.028333 0.043791 0.037435 0.04117 0.039777 0.04545 0.044331 0.043033 0.040056 0.036437 0.0334564 0.034124 0.033915 0.041094
| 0.043572 0.045247 0.037243 0.041367 0.040747 0.043111 0.03102 0.030303 0.028835 0.028773 0.028%43 0.026859 0.030111 0.031188
| 0.036907 0.044387 0.042565 0.041296 0.041735 0.039314 0.039963 0.039773 0.038719 0.039128 0.040101 0.035151 0.033631 0.040517
:0.069351 0.051244 0.050604 0.051791 0.049985 0.049844 0.050638 0.054316 0.056625 0.059196 0.055023 0.045999 0.046916 0.054583
| 0107111 0.115579 0.110836 0.110813 0.111417 0.113222 0.109803 0.129424 (.132856 0.133582 0.125291 0.110856 0.111529 0.114285
| 0.125718 0.124367 0.121614 0.120087 0.119355 0.124532 0.107443 0.11432 0.112555 0.112404 0.116055 0.042283 0.045032 0.050934
10 | 0.034126 0.054783 0.058263 0.053474 0.05698 0.060313 0.0343987 0.040577 0.041761 0.041505 0.045244 0.034121 0.035526 0.038301
11 | 0.048357 0.030567 0.027014 0.026215 0.027414 0.026749 0.021664 0.026606 0.02223 0.022781 0.024184 0.025%43 0.028027 0.02718%
12 | 0.047304 0.028355 0.026738 0.028323 0.028318 0.02851 0.028887 0.033582 0.031553 0.023331 0.031746 0.04331 0.044614 0.043828
13 | 0.043688 0.046847 0.04969 0.052535 0.049891 0.051347 0.064216 0.067413 0.065692 0.069471 0.066605 0.059377 0.065483 0.070992
14 | 0.074558 0.082166 0.07747 0.082747 0.079934 0.082509 0.079185 0.086656 0.088578 0.090076 0.085381 0.045343 0.048065 0.051272
15 | 0.067064 0.066615 0.067526 0.066188 0.065973 0.062836 0.065439 0.076533 0.075342 0.072845 0.071817 0.038778 0.033248 0.038098
16| 0.04863 0.036862 0.038397  0.0387 0.04011 0.033401 0.03233 0.037562 0.037784 0.040864 0.039377 0.032347 0.034798 0.034363
17 | 0.029184 0.035326 0.036558 0.034227 0.032675 0.036567 0.041009 0.04181 0.038722 0.039996 0.04093 0.029725 0.030879 0.03195
18 | 0.043823 0.039188 0.039919 0.039915 0.037348 0.040064 0.031002 0.033309 0.033614 0.033651 0.031235 0.049871 0.048757 0.046672
19 | 0.025728 0.026334 0.024067 0.02455 0.025835 0.022483 0.022672 0.027356 0.024472 0.025242 0.026064 0.025165 0.029331 0.025393
20 | 0.041181 0.034732 0.044058 0.042743 0.043851 0.044019 0.041454 0.049541 0.049873 0.050716 0.047819 0.056643 0.058278 0.053228
21| 0.061551 0.033449 0.032277 0.033141 0.033971 0.032852 0.034573 0.033298 0.033063 0.033683 0.03443 0.035077 0.037492 0.034407
22 | 0.035573 0.034451 0.034683 0.036366 0.032957 0.035475 0.030588 0.036638 0.034285 0.034007 0.036342 0.03609 0.037481 0.038332
23 | 0.051832 0.056603 0.05544 0.055657 0.056222 0.055607 0.040662 0.043691 0.044359 0.043376 0.043733 0.044468 0.042389 0.04333
24 | 0.047649 0.038518 0.035664 0.035774 0.035232 0.035581 0.034896 0.034663 0.035348 0.037039 0.035045 0.037382 0.042858 0.038334
25| 0.041235 0.028365 0.028145 0.025797 0.027729 0.026728 0.021663 0.024517 0.022651 0.022911 0.022283 0.027174 0.02708 0.02235
26 | 0.029667 0.03061 0.030554 0.031854 0.030875 0.025999 0.021623 0.025066 0.023539 0.02406 0.023443 0.023457 0.025749 0.022143
27| 0.07116 0.071365 0.075571 0.071452 0.071186 0.073596 0.073363 0.073725 0.074785 0.072746 0.069639 0.073167 0.07102% 0.07193
28 | 0.060196 0.035108 0.033476 0.037208 0.035475 0.035956 0.035474  0.0387 0.036966 0.035009 0.036453 0.035243 0.035523 0.034706
23 | 0.055368 0.083433 0.07293 0.077655 0.076462 0.075589 0.0852%4 0.076356 0.075817 0.076599 0.080788 0.081574 0.082029 0.082154
30| 0.174825 0.110707 0.096511 0.09543 0.09824  0.1018 0.104773 0.097228 0.096645 0.036389 0.103789 0.105856 0.10253 0.103002

31 0.033837 0.04473 0.046112 0.047228 0.04436 0.052131 0.026907 0.036588 0.0381%4 0.035393 0.033405 0.03434 0.034735 0.03021
27| N AMGRRY N NSAANE N AAS71S N AAT2NA N AMASNE N NSNS N AAAS21 N NAA24 N AAZARG N N7 NMMTTAS N NSINEA 1 NAGE14 N NS122%

- - T R T ]

There are about 20 parameters collection from the field, 11 of these parameters have been selected
relevant for this study. These parameters include: 1. Gage, 2. Cross level, 3. Surface Right (62ft),
4. Surface Right (124ft), 5. Surface Left (62ft), 6. Surface Left (124ft), 7. Alignment Right (62ft),
8. Alignment Right (124ft), 9. Alignment Left (62ft), 10. Alignment Left (124{t), and 11. Warp
(62ft). Figure 4 shows the definition of these parameters.



Profile — the surface uniformity

in the vertical plane of each rail

measured at the mid-point of a

Alinement — the line
uniformity in horizontal
plane of each raii
measuned at the mid-point
of a 62 or 31-foot chord

A

31 or 62-foot
chord

Gage - the distance
between the rails
measured %/; mch below
top surfaca of the rail

Figure 4: Track geometry parameters

EXPLORATORY DATA

Below Figure 5 is a sample of the processed data for the first section of the 500ft section length
and scatter plot.
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Figure 5a Processed data for 500ft section with row = inspection dates, column =

parameters
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PRINCIPAL COMPONENTS FOR 150FT AND S00FT SECTIONS WITH SCREE
PLOTS

Below is a list summary of the principal components that effectively summarize over 90% of the
variation within parameters for each class of section length. Red inks denote sections summarized
by only one principal component. Parameters are not scaled since they already exist as standard
deviation with a general unit expressed in inches.

Table 4: Summary of Principal Components for each Section

Section Length = 150 feet, 35 Sections Section Length = 500 feet, 11 Sections
S 1 Cumulative PCs Percentage I1st  Sectionm 1% Percentage 1st
No. [=2Lr (%) PC No. Cumulative (%) 2PCs
explained (%) PCs>90%  explained (%)
15T 2ND g 3FD 94 68 50.48
15T 2ND g 3FD 9538 51.25 1 15T & JMD 91.50 91.50
15T, 3D 38D g 4TH 94 34 41.49
[ 4 ] 15T 92.74 92.74
[ 5 ] 15T 94.13 9413
5 | 1T g D T G 2 15T 95.60 99.10
15T 21D g 3FD 92.11 63.21
[ 8 | 15T 94.00 94.10
[ 9 | 15T & 2¥D 94.00 85.40 3 15T g& 2D 96.23 96.23
[ 100 | 15T g 2D 9437 67.20
[ 11 | 15T & 2D 91.20 59.97
15T g 2D 92,67 86.54 4 15T 91.60 95 48
15T & 2D 92.10 80.24
15T g 2D 97.00 81.56
4 ST ST »ND
_ 15T, zﬂD,lam & 4T g;'_;g zﬂi 2 ' ’32RD & L 2l
15T g 2D 92 45 81.06
| 18, | 15T & XD 90.48 59.10 ST 2D g
[ 19 R 9397 69.25 6 350 94.96 85.40
15T 2MD g 3RD 9549 55.17
15T 2'D 3RD ATH g 93.56 54.30
5'I'H 1ST’ ZND &
15T, N> g 3RD 92.93 74.81 7 B 2614 88.57
15T JMD g 3ED 97.16 61.00
15T 93 20 93 20
5T
157 g 7 o35 siss 8 1TEID ok o
15T 2ND g 3FD 97.14 74.74
15T JMD g 3ED 94.20 71.56
15T & WD 97.55 87.61 9 131)32;? & 98.00 86.28
15T & JHD 90.48 65.66
BET 15T YD 3ED g 4TH 96.84 50.73
15T & 2¥D 96.21 8591 10 15T 91.30 9733
15T 91.70 91.70
BE 157 00 & 3% 92.90 52.99
15T g D 98 10 P 11 18T & XD 95.52 9552

PERCENTAGE AND CUMMULATIVE PERCENTAGE VARIANCE EXPLAINED

From the above, it is obvious that the first two principal components summarize at least 85% of



the data at any given section. Rather than express track geometry parameters as a function of 11
or more parameters, they could be effectively expressed as a bivariate data as has been shown
above. A scree plot sample for sections in both 150 and 5001t section length also gives elbows at
two principal components as shown below.
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Figure 6: Variance (LHS) and Cumulative Variance (RHS) explained by Principal
Components for Sample Sections in 150ft (above) and 500ft (below) lengths

Defects and Defective Sections

FRA safety standards: Below is a summarized table for the safety thresholds specified by the
Federal Railroad Administration (FRA) for certain track geometry parameters relevant to this
study. These thresholds are as follows:



Table 5: FRA Safety Standards for Track Geometry Parameters

Section # Parameters for Class 7 Track Safety Limits(inches)
1.0. Gage 56”°< Gage <57.25”
2.0. Alinement 62ft <0.5”

3.0. Alinement 124ft <1.25”
4.0. Cross level -0.5°< Gage <77
5.0. Surface 62ft <1.0”
6.0. Surface 124ft <1.5”
7.0. Warp 62ft <1.5”

Sections with Defects

Firstly, a section with defect here is defined as the any point (in feet) within a section that violates
at least one of the above thresholds as specified by FRA. This check was conducted for all sections
across all inspection dates. Below is a summary of the sections with defects and their counts. Dates
have not been included because this study is not concerned about degradation rate.

Table 6: Defect Sections and Counts

S/No Parameters for Sections with Location in Count(s) Total
Class 7 Track Defects (5001t) Feet(s)

1.0. Gage Section 6 2967 to 2971 5 5
2.0. Alinement 62ft No Defects No Defects 0
3.0. Alinement 1241t No Defects No Defects 0
4.0. Section 5 2056 to 2057 2
Section 5 2108 to 2109 2

Cross level Section 11 5194 to 5263 61 70
Section 11 5233 to 5234 2
Section 11 5232 to 5234 3
5.0. Surface 62ft No Defects No Defects 0
6.0. Surface 1241t No Defects No Defects 0
7.0. Warp 62ft No Defects No Defects 0

TOTAL 75

CLASSIFICATION MODELS AND ERROR RATES

10




The classification methods applied are three, two of which are parametric (Linear Discriminant
Analysis and Support Vector Machine) and the other Non-parametric (Random Forest). All the
defective sections were combined and these models were trained on them. Table 5 below shows
the test/cross validation results for each of the models.

Table 7: Error Rates for Different Training Models

S/No | Learning Tool/Model Training Error (%) | Test/CV Error (%)
1.| Linear Discriminant Analysis (LDA) 10.714 CV Error = 14.285
2.| Support Vector Machine (SVM) 8 Test Error = 5.8824
3.| Random Forest 0 Test Error = 5.88

Based on the above, it is interesting to see that the test error is actually lower than the training error
rate with the SVM which is quite unusual and mostly the reverse often times. The test error on the
Random Forest and SVM are however similar while the LDA is performing the least. The SVM
will therefore be selected since it’s parametric a bit more conservative to avoid overfitting.

CLASSIFICATION OF DEFECTIVE SECTIONS USING BEST MODEL AND 4-CLASS
OF PREDICTORS INCLUDING 15T 3 PRINCIPAL COMPONENTS

Table 8: Error Rates Using Different Training Parameters

S/No | Sections | All Parameters | J-Synthetic Coefficient Indian TGI | 153 PCs
1.0. | Section 5 8.33% 8.33% 8.33% 0
2.0. | Section11 |10.714% 10.714% 10.714% 0

11



Biplots for A Sample Defective and Non-Defective Sections
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Figure 7 The principal component scores and the loading vectors in a single biplot display

The figures represent both the principal component scores and the loading vectors in a single

biplot display. The axes with PC1 and PC2 are scores while the other two are the loadings for

each component.
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SVM classification plot
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Figure 9 SVM Classification on Two Principal Components Using a Radial Kernel

CONCLUSIONS

This paper formally described the work on principal components and track quality indices. To
summarize heterogeneous track geometry data, some railways assign weights to selected track
geometry parameter. This assignment is followed by the sum of all the products of the weights and
the parameters to arrive at a value that is used as a measure of overall track quality. While the
assigned weights are often subjective, the parameters selected vary from one railway to the other.
Also, relevant information is lost through neglected parameters and subjective weight assignment.
In order to prevent this, the use of principal components as combined TQIs was proposed in this
work. This made it possible to simplify track geometry data in a way that most of the variance in
the data is captured.
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