Land and Natural Resources Research
Wildfire, Conservation, and Restoration Ecology Research

Dr. Scott Abella
Associate Professor
School of Life Sciences
Email: scott.abella@unlv.edu
Websites:  https://www.unlv.edu/people/scott-abella
https://abellaappliedecologylab.wordpress.com/home/

Expertise
• Fire ecology
• Restoration ecology
• Ecological conservation practices
• Forest health
We perform fire ecology research that assists local and national wildland fire management efforts in changing environments. Before-after wildfire in Red Rock Canyon National Conservation Area, just outside Las Vegas. We study fire effects, fuel management, and restoration strategies.
Critical Zone Hydrology

Dr. Hannes Bauser
- Assistant Professor
- Department of Geoscience
- Email: hannes.bauser@unlv.edu
- Website: https://geoscience.unlv.edu/people/department-faculty/hannes-bauser/

Expertise
- Vadose Zone Hydrology and Soil Physics
- Hydrologic Modeling
- Data Assimilation
- Machine Learning
How can we use data science (e.g., data assimilation, machine learning) to combine process understanding and data to solve the hydrologic scaling challenge?
Forest Inventory and Analysis

- **Dr. Brenda J Buck**
  - Professor
  - Department of Geoscience
  - Email: Brenda.Buck@unlv.edu
  - Website: https://unlv-fia.github.io/UNLV-FIA-Group/index.html

**Expertise**

- University partner to USDA-FIA. Area of emphasis is information management research and development to optimize the storage, delivery, and display of forest inventory data.

- The support we provide helps policy makers, land stewards and non-governmental groups base decisions and assessments related to the health, diversity, and productivity of U.S. forests and grasslands on scientifically credible information.
Medical Geology

- **Dr. Brenda J Buck**
- Professor
- Department of Geoscience
- Email: Brenda.Buck@unlv.edu

**Expertise**

- Expertise: Health effects of mineral dust; Asbestos; Heavy Metals; Soil Science/Geology
Materials Deformation

Dr. Pamela Burnley
Department of Geoscience
Phone: (702) 895-5460
Email: pamela.burnley@unlv.edu

Expertise:
High Pressure Rock Deformation
High Pressure studies of Deformation and the Acoustoelastic effect
High Pressure studies of Deformation and the Acoustoelastic effect

Compression- and shear-wave velocities are a function of compressive stress

Details of multiple slip systems derived from a single multi step experiment

(Taylor, Whitaker & Bumley, in prep)

(Bumley & Kaboli, 2019)
Raman spectroscopic measurements of stress distribution
Peak shifts converted to sample stress using single crystal measurements.
Interaction of Phase Transformation and Deformation

- Growth of spinel in metastable olivine creates mechanical instability
- New microstructural analysis clarifies nature of instability

Electron Backscatter Diffraction Orientation Image Map

(Burnley et al., 1990)

(Burnley et al., in prep)
Radioactive Materials and Radiation

Dr. Pamela Burnley
Department of Geoscience
Phone: (702) 895-5460
Email: pamela.burnley@unlv.edu

Expertise:
Gamma ray background radiation
γ-ray Background Radiation

- Predictive model based on legacy NURE data & geologic map units
- Most points within 1µR/hr
- Largest deviations associated with steep topography
- Led to D. Haber’s PhD research on topographic corrections

Difference between AMS flight data and predictive model
γ-ray Background Radiation

AMS flight data
Cameron, AZ

Difference between AMS data and model

Model based on ASTER data, NURE survey & geologic map

Highlights Uranium mines

(Adcock et al. 2019)
Dr. Dale Devitt
Professor
Director - Center for Urban Water Conservation
School of Life Sciences
Phone 702-895-4699

Expertise
Soil Plant Water Relations
Water Management
Evapotranspiration
Salinity
Current Research

• Assessing the impact of large scale solar development on desert ecosystems.

• Tree grass water use tradeoffs in urban landscapes
10 acre research facility in North Las Vegas dedicated to conducting applied and basic water related research.

Response (growth, flower and seed production) of desert perennial shrubs to altered precipitation
Sedimentary Geology

Dr. Ganqing Jiang
Professor
Department of Geoscience
Phone: (702) 895-2708
Email: Ganqing.Jiang@unlv.edu

Expertise:
Sequence and chemostratigraphy
sedimentology
Carbonate diagenesis
• Sequence and chemostratigraphy

• Paleogeographic reconstruction

• Applications of stable isotopes and rare earth elements

• Paleoenvironmental change across major perturbations of the carbon cycle and mass extinctions
• Basin analyses and paleoceanography

• Fluid migration and carbonate diagenesis

• Tracing fluid migration in sedimentary basins using stable isotopes and trace elements

• Carbonate aquifer
Hydrology

Dr. David K. Kreamer
Professor
Department of Geoscience
Email: dave.kreamer@unlv.edu
Website: https://geoscience.unlv.edu/people/department-faculty/david-k-kreamer/

Expertise

- Hydrologist, Water Quantity and Quality
- Research in Groundwater Tracing and Dating in National Parks and Preserves, Surface Water/Groundwater interactions, Spring Sustainability
- Research in Hazardous Site Characterization and Remediation
- International Water Development and Security
- Climate Change Research – Lake Studies
- Expert Witness in Court Cases, Testimony to United States Congress, Invited Address to the General Assembly of the United Nations
- President – International Association of Hydrogeologists, largest truly international professional organization focused on the wise use and protection of groundwater. A scientific, educational, and charitable volunteer organization with thousands of members in over 130 countries, founded in 1956.
- National and International Lectures and Short Courses including presentations in the Middle East, Africa, Pacific Ocean, People’s Republic of China, Europe, and United States
Contaminant Transport Studies

Research on Springs in Grand Canyon National Park


Students sampling springs as part of sustainability studies in the Mojave desert

Groundwater Modeling Training, Niger, Africa
Climate Science and Paleoclimatology

Matthew S. Lachniet
Professor
Department of Geoscience
Phone 702-895-4388
Matthew.Lachniet@unlv.edu
Paleoclimatology

- Study of the causes, timing, and consequences of climate change on timescales ranging from decades to millennia
- Cause of aridity in the Great Basin and Western United States
- Influence of ocean temperatures on precipitation in Nevada
- Cave archives of past climate with sites in Nevada, Mexico, Central America, and elsewhere
Hydrology

Dr. Michael Nicholl
Department of Geoscience
Phone: (702) 895-4616
Email: michael.nicholl@unlv.edu

Expertise:
Unsaturated zone hydrology
Fractured rock hydrology
Environmental fluid mechanics
Fractured Rock Hydrology

- False color image of a miscible displacement experiment in a single fracture
- Field mapping of fracture networks
- Blue dye (right foreground) is from an infiltration test
- Water (blue) pooled above a fracture intersection
- Isothermal flow across a single rock fracture (matrix-to-matrix flow)

- Two-phase flow and transport in fractured rock
- Laboratory experimentation, field mapping, numerical simulations
- Contaminant transport, geothermal energy, enhanced petroleum recovery
Unsaturated Porous Media

- Millimeter-scale transport experiment
- Sampling Chloride as a proxy for root-driven horizontal flow
- Seepage through gravel-sized capillary barrier materials
- Hydraulic conductivity of a rock slab
- 2D simulation of root-driven transport

- Challenging existing conceptual models for unsaturated and two-phase flow
- Design and execution of critical laboratory/field/numerical experiments
Environmental Geochemistry

Dr. Zach Perzan
• Assistant Professor
• Department of Geoscience
• Email: zach.perzan@unlv.edu
• Website: https://zperzan.github.io/

Expertise
• Environmental geochemistry
• Surface water-groundwater hydrology
• Machine learning
• Uncertainty quantification
• Managed aquifer recharge
Understanding how hydrologic extremes (droughts and floods) impact water quality

Managed aquifer recharge

Floodplain biogeochemistry

Geophysical surveys (top left) give us a 3D image of the distribution of sand, silt and clay within the subsurface (top right). We can then use hydrologic and geochemical models to understand how water (bottom left) and contaminants (bottom right) move through these sediments during a flood.

Sensor arrays deployed in Colorado (top left) and Wyoming (top right) allow us to monitor sudden changes in water quality during floods. By pairing these with field experiments – such as tracer tests (bottom left) – we can develop data-driven water quality forecasts (bottom right).
Dryland ecology, hydrology and climate dynamics

Dr. Matthew Petrie
Assistant Professor
School of Life Sciences
ph: 702-895-5844
e: matthew.petrie@unlv.edu

Expertise:
Vegetation ecology and near-surface hydrology
Forest regeneration
Climate dynamics and climate change forecasting
Extreme events
Landscape ecology
Manipulative field experimentation
Linking extreme climate events and ecological dynamics across space and time

Above: Disentangling locally- and regionally-observed ecological responses to multiyear high and low rainfall periods. Multiyear periods are a key component of understanding climate impacts to arid and semiarid regions. Our research focuses on the physical mechanisms that shape ecological responses, providing a foundation for understanding the effects of local and regional extreme events in a changing climate.
Forecasting climate change impacts

Above: Natural forest regeneration may decline substantially throughout the western US in the 21st century. We study how climate, landscape properties, and the stress tolerance of tree populations will shape the future of western forests.

Left: Forecasts for increasing belowground extreme temperature events in a changing climate. We use downscaled climate model projections to forecast the increasing occurrence of moderate (0-σ) and very high (2-σ) extreme temperature events throughout multiple depths in the soil profile for ecosystems of the central and western US.
Dryland microbes and soil ecology

Dr. Nicole Pietrasiak
• Associate Professor of Sustainability in Arid Lands
• School of Life Sciences
• Email: nicole.pietrasiak@unlv.edu

Expertise
• Soil Microbiology and Ecology
• Biological Soil Crusts
• Phycology and Cyanobacteria/Algae Culture Collection
• Soil Science
• Dryland Ecology
• Biogeomorphology
In our lab we investigate what shapes the diversity, abundance, and distribution of desert microbes.

We also describe species and genera new to science and society.

Landscape and soil properties select for unique microbiomes.
And we identify and quantify the roles microbes play in dryland ecosystem functioning and soil health.

Dryland microbes are crucial for maintaining sustainable arid lands.

Microbes are part of our dryland biodiversity. They prevent soil loss, increase soil fertility, control nutrient cycling, and contribute to carbon sequestration.

Hoellrich et al. 2023

<table>
<thead>
<tr>
<th>Net Carbon Fixation (μmol CO₂ m⁻² s⁻¹)</th>
<th>Light Cyanobacterial Crust</th>
<th>Dark Cyanobacterial Crust</th>
<th>Cyanolichen Crust</th>
<th>Chlorolichen Crust</th>
<th>Moss Crust</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

Stovall et al. 2023
Aridland Population
Biology and Evolution

Dr. Daniel Thompson
Associate Professor
School of Life Sciences
Phone: 702-895-3269
Email: daniel.thompson@unlv.edu

Expertise

• Evolutionary genetics
• Population and evolutionary ecology
• Insect – plant interactions
• Conservation ecology - endemic insects
• Quantitative genetics, Phenotypic plasticity, and Developmental Reaction Norms
• Multivariate Statistical Analysis
• Animal movement, Habitat Selection, and Spatial ecology
Research on Larval Host Plant Selection of the Endangered Endemic Mt Charleston Blue Butterfly (*Icaricia shasta charlestonensis*) Informs Habitat Conservation and Restoration in Spring Mountains National Recreation Area

- Tree Density has a strong negative effect on female butterfly host plant selection and egg-laying (Logistic regression of egg occurrence versus density of bristlecone pines).

- Tree encroachment on open slopes and ridges constrains butterfly reproduction—particularly on ridgelines with high quality butterfly habitat.

- Nectar plants such as *Gutiérrezia sarothrae* have a positive effect on the likelihood of a female’s selection of a larval host plant for egg deposition.

- Avoidance of trees and attraction to nectar determine a female butterfly’s placement of eggs on larval host plants.

- Ongoing fieldwork investigates caterpillar (larva) growth, foodplant requirements, and interactions with mutualistic ants to further understand the essential characteristics of butterfly habitat. This new information is being used by the US Forest Service and the US Fish and Wildlife Service to guide conservation and management decisions in the Spring Mountains, Clark County, Nevada.
Ecological research on Giuliani’s Dune Scarab Beetle (*Pseudocotalpa giulianii*), Big Dune, Nevada, --guiding management decisions of the B.L.M.

Giuliani’s Dune Scarab Beetle (*Pseudocotalpa giulianii*) is a rare beetle endemic (known to occur only at) Big Dune and Lava Dune, Nye County, Nevada. Little is known about the beetle’s life history, egg to adult stage development, larval food, and habitat requirements. Research conducted with Dr. Leslie DeFalco (USGS) in 2019 and 2020 has established:

- Adults do not feed, dwell in the sand, and emerge at sundown each evening for 3 weeks, late April – May

- Male beetles emerge from sand and fly every night for an average of 52.2 min to mate, while female beetles remain buried in sand after initial emergence and mating.

- Female beetles, on average, deposit one egg per day after mating.

- Female beetles have an average lifespan of 47.7 + 1.6 days.

- Male beetles have an average lifespan of only 20.2 + .7 days.

- The longer female lifespan, their apparent cessation of emergence following mating, and their deposition of single eggs scattered through sand has important implications for the conservation of this rare species.

- Laboratory experiments have revealed that beetle larvae hatch within 2 – 3 weeks from eggs and develop at a slow rate with an estimated 2 to 3 years of growth prior to pupation and adult emergence. To date, feeding experiments indicate that dry plant debris scattered in the sand is an essential food source. Further experiments are being conducted to determine whether larvae feed on roots of desert plants and to measure energy storage in fat tissue that apparently fuels adult activity and mating.

- Research findings are informing Bureau of Land Management (BLM) decisions about managing recreational activity at Big Dune and restoring beetle habitat following disturbance by recreational off-road vehicles.