Plants: Ecology, Biology, & Food Source Research
Wildfire, Conservation, and Restoration Ecology Research

Dr. Scott Abella
Associate Professor
School of Life Sciences
Email: scott.abella@unlv.edu
Websites: https://www.unlv.edu/people/scott-abella
https://abellaappliedecologylab.wordpress.com/home/

Expertise
• Fire ecology
• Restoration ecology
• Ecological conservation practices
• Forest health
We perform fire ecology research that assists local and national wildland fire management efforts in changing environments. Before-after wildfire in Red Rock Canyon National Conservation Area, just outside Las Vegas. We study fire effects, fuel management, and restoration strategies.
Forest Inventory and Analysis

Dr. Brenda J Buck
- Professor
- Department of Geoscience
- Email: Brenda.Buck@unlv.edu
- Website: https://unlv-fia.github.io/UNLV-FIA-Group/index.html

Expertise

- University partner to USDA-FIA. Area of emphasis is information management research and development to optimize the storage, delivery, and display of forest inventory data.

- The support we provide helps policy makers, land stewards and non-governmental groups base decisions and assessments related to the health, diversity, and productivity of U.S. forests and grasslands on scientifically credible information.
Medical Geology

- **Dr. Brenda J Buck**
- Professor
- Department of Geoscience
- Email: Brenda.Buck@unlv.edu

Expertise

- Expertise: Health effects of mineral dust; Asbestos; Heavy Metals; Soil Science/Geology
Dr. Dale Devitt
Professor
Director - Center for Urban Water Conservation
School of Life Sciences
Phone 702-895-4699

Expertise
Soil Plant Water Relations
Water Management
Evapotranspiration
Salinity
Current Research

- Assessing the impact of large scale solar development on desert ecosystems.

- Tree grass water use tradeoffs in urban landscapes
10 acre research facility in North Las Vegas dedicated to conducting applied and basic water related research.

Response (growth, flower and seed production) of desert perennial shrubs to altered precipitation.
Dryland ecology, hydrology and climate dynamics

Dr. Matthew Petrie
Assistant Professor
School of Life Sciences
ph: 702-895-5844
e: matthew.petrie@unlv.edu

Expertise:
Vegetation ecology and near-surface hydrology
Forest regeneration
Climate dynamics and climate change forecasting
Extreme events
Landscape ecology
Manipulative field experimentation
Linking extreme climate events and ecological dynamics across space and time

Above: Disentangling locally- and regionally-observed ecological responses to multiyear high and low rainfall periods. Multiyear periods are a key component of understanding climate impacts to arid and semiarid regions. Our research focuses on the physical mechanisms that shape ecological responses, providing a foundation for understanding the effects of local and regional extreme events in a changing climate.
Forecasting climate change impacts

Above: Natural forest regeneration may decline substantially throughout the western US in the 21st century. We study how climate, landscape properties, and the stress tolerance of tree populations will shape the future of western forests.

Left: Forecasts for increasing belowground extreme temperature events in a changing climate. We use downscaled climate model projections to forecast the increasing occurrence of moderate (0-σ) and very high (2-σ) extreme temperature events throughout multiple depths in the soil profile for ecosystems of the central and western US.
Evolutionary Biology

- **Dr. Javier A. Rodríguez**
- Professor of Biological Sciences
- School of Life Sciences
- Email: javier.rodriguez@unlv.edu
- Website: https://jrodriguez.faculty.unlv.edu/

Expertise
- Evolutionary Biology
- Feeding Ecology
- Genetic Divergence
- Biology of Amphibians and Reptiles
Hybrids – *A. pulchellus* with *krugi* mtDNA, 85 individuals, 15 localities

A. pulchellus with native mtDNA, 224 individuals, 39 localities
C. fordii (Hispaniola)
C. striatus (Hispaniola)

Mona (n = 10) \textit{C. m. monensis}
Cayo Diablo (n = 14)
Puerto Rico (n = 5)
Culebra − Ensenada del Cementerio (n = 6)
Tortola I (n = 4)
Culebra − Punta Soldado (n = 2)
St. Thomas (n = 7)
Tortola II (n = 1)
Culebra − Bahía Mosquito (n = 1)

C. inornatus (Puerto Rico)

C. gracilis (Hispaniola)

C. m. granti

Bayesian tree
1059 bp \textit{Cyt b}
866 bp \textit{ND4}

0.02 substitutions per site
Computational biology and the physiology of plants

Dr. Paul J Schulte
Associate Professor,
School of Life Sciences
Email: paul.Schulte@unlv.edu

Expertise
• Plant water relations and transport processes
• Computational fluid dynamics
• Anatomy of transport tissues in plants
Fluid dynamics of flow between cells

Computer models and mathematical approaches to studying transport processes can help us understand the roles that these structures play in the flow of water from roots to the leaves of tall trees.

These images show work based on a computational fluid dynamics approach to flow through pits in conifer tracheids.
Water flows along the xylem in conifer trees from cell-to-cell through small openings called pits. The pits in many species contain structures that appear to act as valves that prevent air from spreading and blocking the transport system. The above figures show results from solid mechanics modeling of the pressures that are required to deflect the valve and seal the pit.
Speciation in Trees

Dr. Elizabeth A. Stacy
Associate Professor of Biology
School of Life Sciences
702.895.4461
elizabeth.stacy@unlv.edu

Expertise
- Local Adaptation & Population Divergence
- Evolution of Reproductive Isolating Barriers
- Phylogeography & Phylogenomics
- Population Genomics
- Hawaiian Evolutionary Biology
Study system: Hawaiian *Metrosideros*

2.5-to-3.9-million-year-old incipient adaptive radiation of woody taxa that dominates Hawaiian forests
Local Adaptation & Population Divergence

Leaf micromorphology

Response to light vs. shade

Response to 1-hour exposure to 2 m/s current

Survival @ 3.5 years

Daily exposure to 43°C
Evolution of Reproductive Isolating Barriers

Cross-fertility between varieties

F1 inviability in maternal environment

↓ F1 & backcross fertility

Month post-outplanting
Phylogeography & Phylogenomics

Phylogenomic analysis of 14 taxa (8.5 million genome-wide SNPs)

Phylogenetic analysis of 11 taxa (8.5 million genome-wide SNPs)

STRUCTURE analysis of 35 populations (9 nuclear SSR loci)
Population Genomics

STRUCTURE analysis (8.5 million SNPs)

FST analysis to detect genomic islands of divergence

Selection analysis

Divergence time estimation