Plants: Ecology, Biology, & Food Source Research

Wildfire, Conservation, and Restoration Ecology Research

Dr. Scott Abella

Associate Professor

School of Life Sciences

Email: scott.abella@unlv.edu

Websites: https://www.unlv.edu/people/scott-abella

https://abellaappliedecologylab.wordpress.com/home/

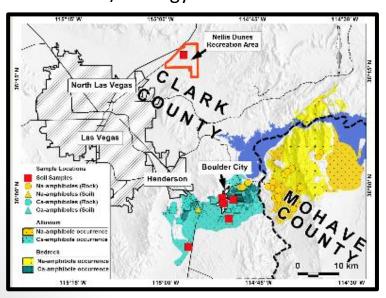
- Fire ecology
- Restoration ecology
- Ecological conservation practices
- Forest health

We perform fire ecology research that assists local and national wildland fire management efforts in changing

Forest Inventory and Analysis

- Dr. Brenda J Buck
- Professor
- Department of Geoscience
- Email: Brenda.Buck@unlv.edu
- Website: https://unlv-fia.github.io/UNLV-FIA-Group/index.html

- University partner to USDA-FIA. Area of emphasis is information management research and development to optimize the storage, delivery, and display of forest inventory data.
- The support we provide helps policy makers, land stewards and non-governmental groups base decisions and assessments related to the health, diversity, and productivity of U.S. forests and grasslands on scientifically credible information.



Medical Geology

- Dr. Brenda J Buck
- Professor
- Department of Geoscience
- Email: Brenda.Buck@unlv.edu

Expertise

 Expertise: Health effects of mineral dust; Asbestos; Heavy Metals; Soil Science/Geology

Dr. Dale Devitt

Professor

Director - Center for Urban Water Conservation
School of Life Sciences
Phone 702-895-4699

Expertise

Soil Plant Water Relations
Water Management
Evapotranspiration
Salinity

Current Research

• Assessing the impact of large scale solar development on desert ecosystems.

 Tree grass water use tradeoffs in urban landscapes

10 acre research facility in North Las Vegas dedicated to conducting applied and basic water related research.

Response (growth, flower and seed production) of desert perennial shrubs to altered precipitation

Dryland ecology, hydrology and climate dynamics

Dr. Matthew Petrie

Assistant Professor

School of Life Sciences

ph: 702-895-5844

e: matthew.petrie@unlv.edu

Expertise:

Vegetation ecology and near-surface hydrology

Forest regeneration

Climate dynamics and climate change forecasting

Extreme events

Landscape ecology

Manipulative field experimentation

Linking extreme climate events and ecological dynamics across space and time

Above: Disentangling locally- and regionally-observed ecological responses to multiyear high and low rainfall periods. Multiyear periods are a key component of understanding climate impacts to arid and semiarid regions. Our research focuses on the physical mechanisms that shape ecological responses, providing a foundation for understanding the effects of local and regional extreme events in a changing climate.

Forecasting climate change impacts

Above: Natural forest regeneration may decline st substantially throughout the western US in the 21 century. We study how climate, landscape properties, and the stress tolerance of tree populations will shape the future of western forests.

Left: Forecasts for increasing belowground extreme temperature events in a changing climate. We use downscaled climate model projections to forecast the increasing occurrence of moderate $(0-\sigma)$ and very high $(2-\sigma)$ extreme temperature events throughout multiple depths in the soil profile for ecosystems of the central and western US.

Evolutionary Biology

- Dr. Javier A. Rodríguez
- Professor of Biological Sciences
- School of Life Sciences
- Email: javier.rodriguez@unlv.edu
- Website: https://jrodriguez.faculty.unlv.edu/

- Evolutionary Biology
- Feeding Ecology
- Genetic Divergence
- Biology of Amphibians and Reptiles

Hybrids – A. pulchellus with krugi mtDNA, 85 individuals,
 15 localities

A. pulchellus with native mtDNA,
 224 individuals, 39 localities

C. m. granti

Bayesian tree 1059 bp *Cyt b* 866 bp *ND4*

Computational biology and the physiology of plants

Dr. Paul J Schulte

Associate Professor, School of Life Sciences Email: paul.Schulte@unlv.edu

- Plant water relations and transport processes
- Computational fluid dynamics
- Anatomy of transport tissues in plants

Fluid dynamics of flow between cells

Computer models and mathematical approaches to studying transport processes can help us understand the roles that these structures play in the flow of water from roots to the leaves of tall trees.

These images show work based on a computational fluid dynamics approach to flow through pits in conifer tracheids.

Biomechanics of valves in plant cells

Water flows along the xylem in conifer trees from cell-to-cell through small openings called pits. The pits in many species contain structures that appear to act as valves that prevent air from spreading and blocking the transport system. The above figures show results from solid mechanics modeling of the pressures that are required to deflect the valve and seal the pit.

Speciation in Trees

Dr. Elizabeth A. Stacy

Associate Professor of Biology School of Life Sciences 702.895.4461 elizabeth.stacy@unlv.edu

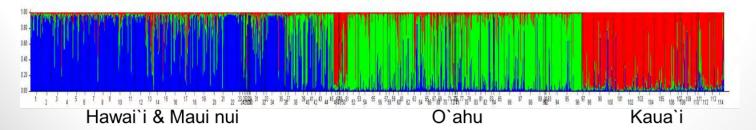
- Local Adaptation & Population Divergence
- Evolution of Reproductive Isolating Barriers
- Phylogeography & Phylogenomics
- Population Genomics
- Hawaiian Evolutionary Biology

Local Adaptation & Population Divergence

Evolution of Reproductive Isolating Barriers

Tree type

Phylogeography & Phylogenomics


Phylogenomic analysis of 14 taxa (8.5 million genome-wide SNPs)

Phylogenetic analysis of 11 taxa (8.5 million genome-wide SNPs)

STRUCTURE analysis of 35 populations (9 nuclear SSR loci)

Population Genomics

Selection analysis

Divergence time estimation

