Organic, Polymer, Nano Material Chemistry Research
Pradip K. Bhowmik

- Professor Chemistry, Department of Chemistry and Biochemistry
- Fellow, American Chemical Society
- Fellow, Polymer Chemistry Division
- Ph.D., University of Massachusetts at Amherst
- CHE 207, pradip.bhowmik@unlv.edu
- http://ww.unlv.edu/chemistry/bhowmik/

Areas of Expertise
- Organic Chemistry
- Green Chemistry
- Polymer Chemistry
- Materials Chemistry
- Nanostructured Materials
- Anticancer Drugs
- Drugs for Alzheimer’s Disease

Research Summary:

Bhowmik and his team are developing the following key areas:
- light-emitting and liquid-crystalline ionic polymers for multitude applications in modern technology
- fire retardants polymers
- nanostructured ionic liquids and ionic liquid crystals for advanced functional materials
- organic salts that emit light for sensors, are excellent lubricants and phase change materials
- cisplatin analogs for cancer therapy
Jun Yong Kang

- Assistant Professor, Department of Chemistry and Biochemistry
- Ph.D., Chemistry, Texas A&M University, College Station, TX
- CHE 217B, junyong.kang@unlv.edu
- http://jkang.faculty.unlv.edu/?page_id=110

Areas of Expertise
- Synthetic organic chemistry
- Development of new synthetic methodology
- Asymmetric organocatalysis
- Organophosphorus chemistry
- Synthesis of bioactive small molecules

Research Summary:
The development of new synthetic methodologies plays a key role in medicinal chemistry, biochemistry, and materials chemistry. Professor Kang and his group have been developing novel synthetic transformation and new chemical reagents such as commercially available NHP-thiourea and NHP-butane to apply for pharmaceuticals and bioactive molecules.
Organic Materials Chemistry

Dong-Chan Lee, Ph.D.
Associate Professor
Department of Chemistry & Biochemistry
Phone: 702-895-1486
Email: dong-chan.lee@unlv.edu

Expertise

• Organic semiconductors with tunable electronic properties
• Self-assembly (nanomaterials, organogels, etc.)
• All organic room-temperature phosphors
• Materials development for solid-state emission with high quantum yield
Electronic-Property Tuning with Smart Molecular Design

<table>
<thead>
<tr>
<th>Chemical Structure</th>
<th>E_{LUMO}</th>
<th>E_{HOMO}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-3.16 eV</td>
<td>-5.43 eV</td>
</tr>
<tr>
<td></td>
<td>-3.26 eV</td>
<td>-5.45 eV</td>
</tr>
<tr>
<td></td>
<td>-3.22 eV</td>
<td>-5.49 eV</td>
</tr>
<tr>
<td></td>
<td>-3.89 eV</td>
<td>-5.32 eV</td>
</tr>
<tr>
<td></td>
<td>-3.80 eV</td>
<td>-5.51 eV</td>
</tr>
<tr>
<td></td>
<td>-3.84 eV</td>
<td>-5.40 eV</td>
</tr>
</tbody>
</table>
Solvent-Dependent Morphology Control through Organogelation

Solid-State Emission with High Quantum Yield

Gel-Induced Room Temperature Phosphorescence